Join 1 Million Scientists Who Use Our Advanced Technical Training In The Lab

Join 1 Million Scientists Who Use Our Advanced Technical Training In The Lab

Get Technical Training Content Weekly*

Access Our Job Search Articles, Videos, Radio Shows & Podcasts For Free

Recent Articles

Tools to Improve Your Panel Design – Determining Antigen Density

Tools to Improve Your Panel Design – Determining Antigen Density

By: Tim Bushnell, PhD

When a researcher chooses to use flow cytometry to answer a scientific question, they first have to build a polychromatic panel that will take advantage of the power of the technology and experimental design. When we set up to use flow cytometry to answer a scientific question, we have to design a polychromatic panel that will allow us to identify the cells of interest – the target of the research.  To identify these cells, we need to build a panel that takes advantage of the relative brightness of the fluorochromes, the expression level of the different proteins on the cell,…

The 5 Essentials To Successful Spectral Unmixing

The 5 Essentials To Successful Spectral Unmixing

By: Heather Brown-Harding, PhD

In an ideal world, we would be able to use fluorophores that don’t have any overlap in emission spectra and autofluorescence wouldn’t obscure your signal. Unfortunately, we don’t live in such a world and often have to use two closely related dyes – or contend with fluorescent molecules that are innately part of our sample. Fluorescent molecules include chlorophyll, collagen, NADPH, and vitamin A.  One example that I recently encountered was developing a new probe for lipids. The reviewers requested a direct comparison of the new dye to Nile Red in the same sample. Both dyes would localize to the…

The Essential Dos and Don'ts of NGS (Next Generation Sequencing)

The Essential Dos and Don'ts of NGS (Next Generation Sequencing)

By: Deepak Kumar, PhD

Next Generation Sequencing (NGS) is a rapidly evolving and widely used method worldwide in both academic and non-academic settings. One of the most valuable aspects of NGS is producing millions of sequenced reads with diverse read lengths from small amounts of input DNA. NGS methods are extremely versatile; producing reads as short as 75 bp, as seen in SOLiD sequencing, to long reads ranging upwards of 1000bp in the case of Pyrosequencing.  Both long and short reads fill a unique niche for researchers. Longer reads generated from NGS are excellent for genomic rearrangement and genome assembly projects; especially when there…

The 5 Fundamental Methods For Imaging Nucleic Acids

The 5 Fundamental Methods For Imaging Nucleic Acids

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This blog will focus on recommendations for electrostatic sorters.

This Is How Full Spectrum Cytometry Works

This Is How Full Spectrum Cytometry Works

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This blog will focus on recommendations for electrostatic sorters.

My Proven 5-Point Fast Track To A Career In Flow

My Proven 5-Point Fast Track To A Career In Flow

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This blog will focus on recommendations for electrostatic sorters.

Up Your Stain Game With These 7 Non-Fluorescent Histology Dyes

Up Your Stain Game With These 7 Non-Fluorescent Histology Dyes

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This blog will focus on recommendations for electrostatic sorters.

3 Ways Flow Cytometry Can Be Used To Research Bacteria

3 Ways Flow Cytometry Can Be Used To Research Bacteria

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This blog will focus on recommendations for electrostatic sorters.

Avoid Flow Cytometry Faux Pas: How To Set Voltage The Right Way

Avoid Flow Cytometry Faux Pas: How To Set Voltage The Right Way

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This blog will focus on recommendations for electrostatic sorters.

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This blog will focus on recommendations for electrostatic sorters.

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This blog will focus on recommendations for electrostatic sorters.

My 3-Step Panel Validation Pocket Guide

My 3-Step Panel Validation Pocket Guide

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This blog will focus on recommendations for electrostatic sorters.

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.