5 Drool Worthy Imaging Advances Of 2020

2020 was a difficult year for many, with their own research being interrupted- either by lab shutdowns or recruitment into the race against COVID-19. Despite the challenges, scientists have continued to be creative and have pushed the boundaries of what is possible. These are the techniques and technologies that every microscopist was envious of in 2020.

Spatially Resolved Transcriptomics

Nature Methods declared that spatially resolved transcriptomics was the 2020 method of the year. These are a  group of methods that combine gene expression with their physical location. Single-cell RNA sequencing (scRNAseq) was originally developed for cells that had been dissociated from the tissues, so the location of the cell and how it was associated with neighboring cells were lost.  Biologists have realized that context is an essential part of the puzzle needed for answering fundamental questions about development and disease. 

Spatially resolved transcriptomics is not new, it has been around for a decade, but advances in imaging have made it a very powerful tool. Previously, there were problems with molecular crowding, photobleaching, and slow acquisition but expansion microscopy, brighter dyes, and rapid imaging techniques such as lightsheet microscopy have all overcome these problems.

Nanobodies

Nanobodies are also known as single-domain antibodies; 10-times smaller than the conventional IgG antibodies. Nanobodies were first discovered in the 1980s, so again the technology isn’t new, but the way it is being used changed drastically in the last year.  

Commercial companies recently started carrying nanobodies, and there are several advantages for microscopy. The first and most obvious is that nanobodies are only 2nm, which increases resolution (through less epitope displacement) when working with super-resolution technologies.  Less obvious, but nonetheless important is that the small size allows users to more densely label their samples allowing a higher signal from your protein of interest. 

Figure 1: Nanobodies consist of a single VHH (variable heavy domain of heavy chain antibodies) domain. Source

There are other  novel uses of nanobodies that have been described in 2020.  One novel use of nanobodies is “ligand-modulated antibody fragments” (LAMAs) that can be chemogenetically controlled. This is a useful way to reversibly study the role of GFP-fusion proteins in biological processes. Another novel use that was published this year is the use of nanobodies embedded in organelle membranes to study how actin interacts with specific organelles.  There will likely be quite a few other new uses for nanobodies that are published in 2021.

MINFLUX

I first learned of MINFLUX when Stefan Hell gave a keynote lecture at the “Seeing is Believing” conference.  He presented different ways that the technology could be used to achieve 1-3 nm resolution.  At the end of the talk, he stated that he had started super-resolution microscopy and  with the advent of MINFLUX he was closing the book on super-resolution hardware. Any more improvements in resolution would have to be achieved through this software. That seems like quite a bold statement, but only time will tell if he is correct. Currently, only one biologically relevant sample has been imaged in nuclear pore complexes. If MINFLUX can be applied to viral assembly, chromatin dynamics, or phase-phase separation it could be a powerful tool for discovery.

Figure 2: MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Source.

Smart Microscopes

Anything that is electronic seems to be coming out with a “smart” version these days and microscopes are not the exception.  The first smart features were detecting a sample and imaging just the sample (i.e. tissue section), but improvements are rapidly published and integrated into commercial equipment. The strength of smart microscopy is that data from acquisition give real-time feedback to change the parameters of the microscope. Rita Strack, senior editor at Nature Methods, suggests that the shift to smarter microscopy is “poised to eventually take humans out of the loop in imaging experiments.” Currently, there are methods to control illumination, spatial resolution, or regions of interest. 

There is still plenty of room for growth in the acquisition side of microscopy, providing clearer pictures, less phototoxicity, and high-resolution imaging only of areas of interest.

GPU Image Reconstruction And Analysis

Artificial intelligence-based image reconstruction and analysis has been previously reserved only for groups with high powered computers and data scientists. This was generally due to the difficulty training the system and the dependence on massive CPUs. Then, about 5 years ago, more of the workload was transferred to GPUs, which are much quicker, but at the time this was only still done by well-funded labs.  

At the end of 2019, a paper by Robert Haase introduced features for FIJI called CLIJ that allowed for GPU processing on any computer, including low-cost laptops. A laptop GPU could now process images faster than a workstation CPU. Some processing that would take days were cut down to mere hours on a workstation GPU.

Figure 3: CLIJ: GPU-accelerated image processing. Source.

Another powerful tool recently released is Noise2Void by the Jug group. It allows de-noising/restoration without the need to train the software on matched images of good vs poor images. Researchers may not have access to the super-resolution microscopes to be able to create matched pairs, but Noise2Void is able to improve the images without that requirement. 

There is a whole alphabet soup of techniques that can assist with speeding up your analysis. Some examples are fcsSOFI for FCS imaging analysis, GIANI for 3D image sets, SRRF for live-cell super-resolution, and NanoJ-SQUIRREL for image quality estimation. 

Technology in microscopy keeps pushing the limits and assists in key new biological discoveries. Hopefully, we continue to see rapid growth in 2021.

To learn more about important techniques for your flow microscopy lab, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Expert Microscopy wait list.

Join Expert Cytometry's Mastery Class
Heather Brown-Harding
Heather Brown-Harding

Heather Brown-Harding, PhD, is currently the assistant director of Wake Forest Microscopy and graduate teaching faculty.She also maintains a small research group that works on imaging of host-pathogen interactions. Heather is passionate about making science accessible to everyone.High-quality research shouldn’t be exclusive to elite institutions or made incomprehensible by unnecessary jargon. She created the modules for Excite Microscopy with this mission.

In her free time, she enjoys playing with her cat & dog, trying out new craft ciders and painting.You can find her on twitter (@microscopyEd) a few times of day discussing new imaging techniques with peers.

Similar Articles

4 No Cost Ways To Improve Your Microscopy Image Quality

4 No Cost Ways To Improve Your Microscopy Image Quality

By: Heather Brown-Harding, PhD

Image quality is critical for accurate and reproducible data. Many people get stuck on the magnification of the objective or on using a confocal instead of a widefield microscope. There are several other factors that affect the image quality such as the numerical aperture of the objective, the signal-to-noise ratio of the system, or the brightness of the sample.  Numerical aperture is the ability of an objective to collect light from a sample, but it contributes to two key formulas that will affect your image quality. The first is the theoretical resolution of the objective. It is expressed with the…

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

By: Heather Brown-Harding, PhD

TIRF is not as common as other microscopy based techniques due to certain restrictions. We will discuss these restrictions, then analyze why it might be perfect for your experiment.  TIRF relies on an evanescent wave, created through a critical angle of coherent light (i.e. laser) that reaches a refractive index mismatch.  What does it mean in practice?  A high angle laser reflects off the interface of the coverslip and the sample. Although the depth that this wave penetrates is dependent on the wavelength of the light, in practice it is approximately 50-300nm from the coverslip. Therefore, the cell membrane is…

Picking The Right Functional Imaging Probe

Picking The Right Functional Imaging Probe

By: Heather Brown-Harding, PhD

As biologists, we study the process of life, however, it’s intricacies cannot be captured by a snapshot in time. Generally, the easiest imaging experiments are those where the samples are stained, fixed, and imaged within a few days of procurement, but that too doesn’t capture the dynamic processes common in cells and organisms. Live cell imaging when combined with reporters serves as a powerful tool to provide solid imaging data. Cameleon —one of the first reporters— was developed in 1997 in Roger Tsien’s lab.  Cameleon is a green fluorescent protein (GFP) that undergoes a conformational change in the presence of…

7 Key Image Analysis Terms For New Microscopist

7 Key Image Analysis Terms For New Microscopist

By: Heather Brown-Harding, PhD

As scientists, we need to perform image analysis after we’ve acquired images in the microscope, otherwise, we have just a pretty picture and not data. The vocabulary for image processing and analysis can be a little intimidating to those new to the field. Therefore, in this blog, I’m going to break down 7 terms that are key when post-processing of images. 1. RGB Image Images acquired during microscopy can be grouped into two main categories. Either monochrome (that can be multichannel) or “RGB.” RGB stands for red, green, blue – the primary colors of light. The cameras in our phones…

The 5 Essentials To Successful Spectral Unmixing

The 5 Essentials To Successful Spectral Unmixing

By: Heather Brown-Harding, PhD

In an ideal world, we would be able to use fluorophores that don’t have any overlap in emission spectra and autofluorescence wouldn’t obscure your signal. Unfortunately, we don’t live in such a world and often have to use two closely related dyes – or contend with fluorescent molecules that are innately part of our sample. Fluorescent molecules include chlorophyll, collagen, NADPH, and vitamin A.  One example that I recently encountered was developing a new probe for lipids. The reviewers requested a direct comparison of the new dye to Nile Red in the same sample. Both dyes would localize to the…

The 5 Fundamental Methods For Imaging Nucleic Acids

The 5 Fundamental Methods For Imaging Nucleic Acids

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Optical Tissue Clearing For Pristine Sample Preparation

Optical Tissue Clearing For Pristine Sample Preparation

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.