What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

TIRF is not as common as other microscopy based techniques due to certain restrictions. We will discuss these restrictions, then analyze why it might be perfect for your experiment. 

TIRF relies on an evanescent wave, created through a critical angle of coherent light (i.e. laser) that reaches a refractive index mismatch. 

What does it mean in practice? 

A high angle laser reflects off the interface of the coverslip and the sample. Although the depth that this wave penetrates is dependent on the wavelength of the light, in practice it is approximately 50-300nm from the coverslip. Therefore, the cell membrane is often the focus of TIRF microscopy. 

Yet another restriction is the ability to do multichannel images. Since the depth of imaging is dependent on the wavelength of light; the angle of illumination needs to be different for each wavelength of light used. Modern commercial systems can make those adjustments, but if the system is not well calibrated it could create artifacts of colocalization in the z-direction. 

Figure 1: Illumination of a sample by widefield, laser scanning confocal, and TIRF. Widefield microscopy illuminates the entire sample (red), while laser scanning confocal microscopy (LSM) directs light to a pinpoint and illuminates cones of light through the sample.  TIRF microscopy only illuminates the thin section being imaged.  

TIRF Provides An Increase In Signal-To-Noise Ratio (S/N)

Out of focus light creates a haze in an image, which diminishes the ability of a system to resolve two points of light or structures. In widefield microscopes the whole sample is illuminated and then a section of the sample is collected. All the out of focus light is also collected during the acquisition (Figure 1). In confocal microscopy, a pinhole is used to focus the light into a cone and that light is collected from the focal plane and excluded from elsewhere. TIRF is unique as only the area of acquisition is illuminated and collected. Compared to widefield microscopy, TIRF can provide over a 30x increase in S/N

In an ideal system, the resolution is approximately half of the wavelength of light. Unfortunately, we don’t live in the perfect physics scenario that is needed for the calculation. Out of focus light increases the distance between two points needed to resolve the structures. Since TIRF reduces out of focus light, it increases the effective resolution of the system.

Figure 2: The effect of S/N on resolution of an image. Resolution is the ability to distinguish between two points of light. Low S/N obscures details (left), while a high S/N provides an image with clear structures in the sample (right).  Leica Microsystems

TIRF Is Gentle On Live Samples

The evanescent wave created for imaging is at most 300nm deep, allowing most of the cells to remain in the dark. This is important because when cells have fluorophores present, the light causes the creation of ROS, specifically singlet oxygen 1O2 which causes cell damage and altered physiology. This phenomena is called phototoxicity and ranges from cell death to phenotype artifacts. Therefore, it is particularly critical to limit phototoxicity of cells if you are imaging samples over an extended period of time. 

TIRF Minimizes Photobleaching

The limited depth of illumination and acquisition in TIRF work to our advantage when it comes to photobleaching. The unilluminated area of the cell  can provide new fluorescent units over time, decreasing photobleaching. For example, actin can either be monomeric or filamentous, it readily transitions between the two forms. If you are imaging actin formation at the interface of the cell membrane, new actin monomers will be constantly brought in, providing fresh fluorescent proteins.

TIRF Acquisition Time Is Faster Than Confocal Microscopy

TIRF acquisition occurs at the same rate as widefield microscopy, so it can capture very rapid time series. Laser scanning confocal microscopy (LSM) is much slower, and even spinning disc confocal microscopes are somewhat slower than TIRF. Since several cellular signaling events occur at the millisecond level or faster, therefore speed is critical for these experiments. 

Best Applications For TIRF Microscopy

TIRF is a very popular technique for experiments involving cellular processes at the cell membrane. One such experiment is investigating G-protein coupled receptor (GPCR) signaling, which is an important family of signalling receptor proteins for cells to sense the extracellular environment. 

Another popular use for TIRF microscopy is imaging endocytosis/exocytosis. Under widefield microscopy conditions, there are too many fluorophores at different z-positions so scientists can obtain the resolution needed to observe single events. TIRF on the other hand takes very thin sections allowing the puncta to be observed. LSM can provide thin sections, but is too harsh and slow for experiments such as neurotransmitter release in synapse. 

Figure 3: Cell Focal Adhesions imaged by (a) widefield (b) TIRF.  Notice how the haze has been removed allowing for the resolution of the focal adhesions. Nikon MicroscopyU

The last category of experiments that are popular with TIRF microscopy is cytoskeletal dynamics (actin, tubulin, and intermediate filaments). TIRF microscopy is an excellent technique for focal adhesions, cellular locomotion, and protein trafficking along the microtubules. The cytoskeleton often has many overlapping filaments in the z-direction, so the thin imaging section really increases the ability to resolve single filaments. Figure 3 demonstrates the improvement in S/N in focal adhesions. 

Concluding Remarks

TIRF provides a 30x increase in the S/N ratio facilitating a much higher resolution. It also has the advantage of being gentle on the live samples and does not spark any altered physiology due to ROS buildup. Reduced photobleaching effect and faster acquisition time favor TIRF use for studying cell signaling events. TIRF microscopy certainly has its limits due to the method of illumination, but the same illumination makes it adept for numerous cell biology experiments. 

To learn more about important techniques for your flow microscopy lab, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Expert Microscopy wait list.

Join Expert Cytometry's Mastery Class
Heather Brown-Harding
Heather Brown-Harding

Heather Brown-Harding, PhD, is currently the assistant director of Wake Forest Microscopy and graduate teaching faculty.She also maintains a small research group that works on imaging of host-pathogen interactions. Heather is passionate about making science accessible to everyone.High-quality research shouldn’t be exclusive to elite institutions or made incomprehensible by unnecessary jargon. She created the modules for Excite Microscopy with this mission.

In her free time, she enjoys playing with her cat & dog, trying out new craft ciders and painting.You can find her on twitter (@microscopyEd) a few times of day discussing new imaging techniques with peers.

Similar Articles

Which Fluorophores To Use For Your Microscopy Experiment

Which Fluorophores To Use For Your Microscopy Experiment

By: Heather Brown-Harding, PhD

Fluorophore selection is important. I have often been asked by my facility users which fluorophore is best suited for their experiments. The answer to this is mostly dependent on whether they are using a widefield microscope with set excitation/emission cubes or a laser based system that lets you select the laser and the emission window. Once you have narrowed down which fluorophores you can excite and collect the correct emission, you can further refine the specific fluorophore that is best for your experiment.  In this blog  we will discuss how to determine what can work with your microscope, and how…

4 No Cost Ways To Improve Your Microscopy Image Quality

4 No Cost Ways To Improve Your Microscopy Image Quality

By: Heather Brown-Harding, PhD

Image quality is critical for accurate and reproducible data. Many people get stuck on the magnification of the objective or on using a confocal instead of a widefield microscope. There are several other factors that affect the image quality such as the numerical aperture of the objective, the signal-to-noise ratio of the system, or the brightness of the sample.  Numerical aperture is the ability of an objective to collect light from a sample, but it contributes to two key formulas that will affect your image quality. The first is the theoretical resolution of the objective. It is expressed with the…

5 Drool Worthy Imaging Advances Of 2020

5 Drool Worthy Imaging Advances Of 2020

By: Heather Brown-Harding, PhD

2020 was a difficult year for many, with their own research being interrupted- either by lab shutdowns or recruitment into the race against COVID-19. Despite the challenges, scientists have continued to be creative and have pushed the boundaries of what is possible. These are the techniques and technologies that every microscopist was envious of in 2020. Spatially Resolved Transcriptomics Nature Methods declared that spatially resolved transcriptomics was the 2020 method of the year. These are a  group of methods that combine gene expression with their physical location. Single-cell RNA sequencing (scRNAseq) was originally developed for cells that had been dissociated…

Picking The Right Functional Imaging Probe

Picking The Right Functional Imaging Probe

By: Heather Brown-Harding, PhD

As biologists, we study the process of life, however, it’s intricacies cannot be captured by a snapshot in time. Generally, the easiest imaging experiments are those where the samples are stained, fixed, and imaged within a few days of procurement, but that too doesn’t capture the dynamic processes common in cells and organisms. Live cell imaging when combined with reporters serves as a powerful tool to provide solid imaging data. Cameleon —one of the first reporters— was developed in 1997 in Roger Tsien’s lab.  Cameleon is a green fluorescent protein (GFP) that undergoes a conformational change in the presence of…

7 Key Image Analysis Terms For New Microscopist

7 Key Image Analysis Terms For New Microscopist

By: Heather Brown-Harding, PhD

As scientists, we need to perform image analysis after we’ve acquired images in the microscope, otherwise, we have just a pretty picture and not data. The vocabulary for image processing and analysis can be a little intimidating to those new to the field. Therefore, in this blog, I’m going to break down 7 terms that are key when post-processing of images. 1. RGB Image Images acquired during microscopy can be grouped into two main categories. Either monochrome (that can be multichannel) or “RGB.” RGB stands for red, green, blue – the primary colors of light. The cameras in our phones…

The 5 Essentials To Successful Spectral Unmixing

The 5 Essentials To Successful Spectral Unmixing

By: Heather Brown-Harding, PhD

In an ideal world, we would be able to use fluorophores that don’t have any overlap in emission spectra and autofluorescence wouldn’t obscure your signal. Unfortunately, we don’t live in such a world and often have to use two closely related dyes – or contend with fluorescent molecules that are innately part of our sample. Fluorescent molecules include chlorophyll, collagen, NADPH, and vitamin A.  One example that I recently encountered was developing a new probe for lipids. The reviewers requested a direct comparison of the new dye to Nile Red in the same sample. Both dyes would localize to the…

The 5 Fundamental Methods For Imaging Nucleic Acids

The 5 Fundamental Methods For Imaging Nucleic Acids

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.