3 Reagents For Identifying Live, Dead, And Apoptotic Cells By Flow Cytometry

As cells die, the membrane becomes permeable.

This allows for antibodies to penetrate the cells, which can now mimic live cells. For this and other reasons, it’s important to remove dead cells from further analysis during your flow cytometry experiments.

For example, let’s say you merely need to generate an accurate cell count. If you fail to remove your dead cells first, you might think you’re seeding 10,000 cells, but in reality only 7,000 of your cells are actually viable.

Since the dead cells in your sample will not divide, your culture will take extra time to reach the needed level of confluence, ruining your experimental timeline and weekend plans. Or maybe you’re sorting cells for a downstream functional assay, stimulating sorted T cells with antigen and measuring production of IFN. If you failed to remove your dead cells first, you could end up with different percentages of dead cells in one sorted sample versus another sample. This means you will end up with fewer vital cells in one set of wells versus another, altering your results and negatively influencing your interpretation of the data.

In one final example, let’s say you’re simply staining surface antigens in a population of cells. The problem here is that dead cells take up antibody very readily. If you failed to remove your dead cells beforehand, gating on your population of interest will be exceptionally difficult. To make matters worse, both dead cells and apoptotic cells are highly autofluorescent. These last two issues, in particular, will become even more troublesome if you are using dim markers or rare cell types.

Why You Need To Remove Dead Cells

Dead cells should be removed from all flow cytometry experiments that aim to evaluate live cell lineage and functionality.

Below are two simple examples of why you need to remove non-viable cells prior to implementing your flow cytometry gating strategies.

The two plots display mesenchymal stromal cells (MSC) produced in a Good Manufacturing Practices lab. The lab in question is very good at producing these cells from bone marrow and routinely generates 100% CD45-negative cells after their analysis.

In the panel on the left, the sample is stained with a dead cell marker only. Here, you can easily see what appears to be CD45 contamination of their MSC product in the dead cell (dead cell marker-positive) fraction. This would NOT be possible without the dead cell marker. Also, as discussed above, the left panel reveals the higher levels of autofluorescence in the dead cells. Finally, by adding anti-CD45 antibody to the sample (right panel)you see both the autofluorescent population, as well as a separate CD45-positive population that’s taking up the antibody.

cell apoptosis | Expert Cytometry | live cell research

Fortunately for scientists and flow cytometrists like you, there are multiple ways to label and identify dead cells so they can be removed from your flow cytometry analysis and cell sorting experiments.

3 Dead Cell Reagents To Improve Your Data Analysis

There are several methods for analyzing live, dead, and apoptotic cells by flow cytometry. These methods can be divided into three reagent classes, including classic DNA dyes, amine reactive dyes, and vital dyes.

With the following three options of live dead cell reagents available to every scientist and flow cytometrist, you should have little trouble finding a dye that fits into your antibody panel and your flow cytometry assay conditions overall. Adding the right reagent will result in increased quality in your data and increased confidence of your conclusions by both you and those reviewing your grants and papers.

1. Classic DNA dyes.

Classic DNA dyes are exactly that—classic. They are the first type of live dead cell dyes that most scientists and flow cytometrists consider for their experiments. Examples of these dyes include the Sytox dyes, DRAQ7, propidium iodide (PI), and 7-aminoactinomycin D (7-AAD). PI and 7-AAD in particular have a long history in flow cytometry applications. This is because the method of action of PI and 7-AAD are very similar. They are both DNA binding dyes that are membrane impermeant, meaning living cells with intact membranes will exclude these dyes and exhibit little to no fluorescence. Here are the pros and cons overall…

Pros: Classic DNA dyes are easy to use and typically added at the end of staining, which means they require minimal incubation. These DNA binding dyes are also inexpensive, meaning you should have little trouble convincing your boss to buy them.

Cons: Cell impermeant dyes are not appropriate for fix perm staining applications. You will also be limited in excitation and emission selections compared to other dead cell reagent options. You must also use a dead cell compensation control for experiments using these dyes. A good way to prepare such a control is by heat killing a sample of your cells at 70°C for 30 minutes prior to adding the dye.

2. Amine dyes.

Amine dyes are one of the greatest flow cytometry inventions since automatic compensation. First, they are fixable, so whether you’re traditionally staining your cells or fixing and permeabilizing your cells, the fluorescence is maintained. As a result, you can batch a large number of samples while still keeping your flow cytometry best practices intact.

Second, amine dyes are available in a wide range of excitation and emission profiles, making them extremely easy to work into today’s increasingly multi-parametric and multicolor assays. Amine dyes are also membrane impermeant, but rather than binding DNA, they work by binding the amine groups of cellular proteins. Live cells with intact membranes will allow the dye access only to the few amines on the cell surface, while dead cells will allow the dye access to the many more amines on proteins inside the cell, resulting in higher fluorescence.

Pros: There is a wide selection of amine dyes from multiple manufacturers so you can fit these into any flow cytometry antibody panel with ease. Amine dyes are also fixable so they can be easily integrated into batching protocols. Finally, amine-reactive beads are now readily available for use as your dead cell marker compensation control.

Cons: While amine dyes are ideal for your fixation and permeabilization experiments, their use will add time to your fixation protocol. In addition, amine dyes are more expensive than the other reagents listed here. Titration of your amine dyes can reduce costs, but titration must be done carefully to minimize the number freeze-thaw cycles you subject the reagents to. Most importantly, you must remember to label your cells with amine reactive dyes only in the absence of free protein, otherwise you’ll stain the protein in your solution, not the cells of interest.

3. Vital dyes.

Instead of binding to DNA, like the classic DNA dyes, or to protein like the amine reactive dyes, this third class of reagents measures viability by fluorescing when acted upon in metabolically active cells.  Calcein acetomethoxyis membrane permeable, yet, due to its attached acetomethoxy group , does not fluoresce. However, once inside a metabolically active cell, cellular esterases cleave the acetomethoxy group yielding calcein. Once free, calcein readily binds intracellular calcium and fluoresces brightly green. As a result, viable cells appear bright green, while dead cells do not.

Pros: Like classic DNA dyes, calcein is easy to use and fast acting. All you have to do is add the reagent to your sample, incubate for a few minutes, and then analyze. Also like classic DNA dyes, this vital dye is inexpensive.  Just remember to titrate the reagent before adding it to your cells of interest, as each cell type will have a different optimal staining concentration.

Cons: Since calcein requires cleavage by active cellular esterases, you cannot easily use this dye in your fixation and permeabilization experiments. You are also limited in terms of excitation and emission choices. As a result, working this vital dye into your multicolor experimental and control panels can be difficult.

The addition of a viability dye is essential for good polychromatic flow cytometry.  With the above selection of dead cell reagents, you should have no difficulty fitting this marker into your flow cytometry antibody panel and instrument. Here’s the overall lesson—NO cell preparation is 100% viable. Therefore, the consequences of dead cells masquerading as live cells can result in an overestimation of rare events or the identification of cells that don’t really exist in nature. The only way to prevent this is to remove these dead cells from your final analysis using one of the above reagents.

To learn more about FMO controls, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

Understanding Clinical Trials And Drug Development As A Research Scientist

Understanding Clinical Trials And Drug Development As A Research Scientist

By: Deepak Kumar, PhD

Clinical trials are studies designed to test the novel methods of diagnosing and treating health conditions – by observing the outcomes of human subjects under experimental conditions.  These are interventional studies that are performed under stringent clinical laboratory settings. Contrariwise, non-interventional studies are performed outside the clinical trial settings that provide researchers an opportunity to monitor the effect of drugs in real-life situations. Non-interventional trials are also termed observational studies as they include post-marketing surveillance studies (PMS) and post-authorization safety studies (PASS). Clinical trials are preferred for testing newly developed drugs since interventional studies are conducted in a highly monitored…

Which Fluorophores To Use For Your Microscopy Experiment

Which Fluorophores To Use For Your Microscopy Experiment

By: Heather Brown-Harding, PhD

Fluorophore selection is important. I have often been asked by my facility users which fluorophore is best suited for their experiments. The answer to this is mostly dependent on whether they are using a widefield microscope with set excitation/emission cubes or a laser based system that lets you select the laser and the emission window. Once you have narrowed down which fluorophores you can excite and collect the correct emission, you can further refine the specific fluorophore that is best for your experiment.  In this blog  we will discuss how to determine what can work with your microscope, and how…

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

By: Deepak Kumar, PhD

In the first blog of this series, we explored the power of sequencing the genome at various levels. We also dealt with how the characterization of the RNA expression levels helps us to understand the changes at the genome level. These changes impact the downstream expression of the target genes. In this blog, we will explore how NGS sequencing can help us comprehend DNA modification that affect the expression pattern of the given genes (epigenetic profiling) as well as characterizing the DNA-protein interactions that allow for the identification of genes that may be regulated by a given protein.  DNA Methylation Profiling…

4 No Cost Ways To Improve Your Microscopy Image Quality

4 No Cost Ways To Improve Your Microscopy Image Quality

By: Heather Brown-Harding, PhD

Image quality is critical for accurate and reproducible data. Many people get stuck on the magnification of the objective or on using a confocal instead of a widefield microscope. There are several other factors that affect the image quality such as the numerical aperture of the objective, the signal-to-noise ratio of the system, or the brightness of the sample.  Numerical aperture is the ability of an objective to collect light from a sample, but it contributes to two key formulas that will affect your image quality. The first is the theoretical resolution of the objective. It is expressed with the…

How To Profile DNA And RNA Expression Using Next Generation Sequencing

How To Profile DNA And RNA Expression Using Next Generation Sequencing

By: Deepak Kumar, PhD

Why is Next Generation Sequencing so powerful to explore and answer both clinical and research questions. With the ability to sequence whole genomes, identifying novel changes between individuals, to exploring what RNA sequences are being expressed, or to examine DNA modifications and protein-DNA interactions occurring that can help researchers better understand the complex regulation of transcription. This, in turn, allows them to characterize changes during different disease states, which can suggest a way to treat said disease.  Over the next two blogs, I will highlight these different methods along with illustrating how these can help clinical diagnostics as well as…

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

By: Heather Brown-Harding, PhD

TIRF is not as common as other microscopy based techniques due to certain restrictions. We will discuss these restrictions, then analyze why it might be perfect for your experiment.  TIRF relies on an evanescent wave, created through a critical angle of coherent light (i.e. laser) that reaches a refractive index mismatch.  What does it mean in practice?  A high angle laser reflects off the interface of the coverslip and the sample. Although the depth that this wave penetrates is dependent on the wavelength of the light, in practice it is approximately 50-300nm from the coverslip. Therefore, the cell membrane is…

What Is Next Generation Sequencing (NGS) And How Is It Used In Drug Development

What Is Next Generation Sequencing (NGS) And How Is It Used In Drug Development

By: Deepak Kumar, PhD

NGS methodologies have been used to produce high-throughput sequence data. These data with appropriate computational analyses facilitate variant identification and prove to be extremely valuable in pharmaceutical industries and clinical practice for developing drug molecules inhibiting disease progression. Thus, by providing a comprehensive profile of an individual’s variome — particularly that of clinical relevance consisting of pathogenic variants — NGS helps in determining new disease genes. The information thus obtained on genetic variations and the target disease genes can be used by the Pharma companies to develop drugs impeding these variants and their disease-causing effect. However simple this may allude…

5 Drool Worthy Imaging Advances Of 2020

5 Drool Worthy Imaging Advances Of 2020

By: Heather Brown-Harding, PhD

2020 was a difficult year for many, with their own research being interrupted- either by lab shutdowns or recruitment into the race against COVID-19. Despite the challenges, scientists have continued to be creative and have pushed the boundaries of what is possible. These are the techniques and technologies that every microscopist was envious of in 2020. Spatially Resolved Transcriptomics Nature Methods declared that spatially resolved transcriptomics was the 2020 method of the year. These are a  group of methods that combine gene expression with their physical location. Single-cell RNA sequencing (scRNAseq) was originally developed for cells that had been dissociated…

Picking The Right Functional Imaging Probe

Picking The Right Functional Imaging Probe

By: Heather Brown-Harding, PhD

As biologists, we study the process of life, however, it’s intricacies cannot be captured by a snapshot in time. Generally, the easiest imaging experiments are those where the samples are stained, fixed, and imaged within a few days of procurement, but that too doesn’t capture the dynamic processes common in cells and organisms. Live cell imaging when combined with reporters serves as a powerful tool to provide solid imaging data. Cameleon —one of the first reporters— was developed in 1997 in Roger Tsien’s lab.  Cameleon is a green fluorescent protein (GFP) that undergoes a conformational change in the presence of…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.