5 Flow Cytometry Strategies That Sun Tzu Taught Me

Sun Tzu was a Chinese general and philosopher. His most famous writing is ‘The Art of War’, and has been studied by generals and CEOs, to glean ideas and strategies to help their missions. I was recently rereading this work and thought to myself if any of Sun Tzu’s lessons could apply to flow cytometry.  So I have identified 5 points that I think lend themselves to thinking about flow cytometry. 

“Quickness is the essence of the war.”

In flow cytometry, speed is of the essence. The longer the cells are out of their natural environment, the less happy they are. If you are performing analysis, after isolation, staining time will be dependent on what the target is. Fortunately, for analysis, it is possible to fix the cells and store them till your time on the cytometer. Of course, care must be taken when fixing cells, as fixatives can impact the quality of the fluorochromes. 

Speed is especially important in cell sorting experiments. The table below shows some calculations for how long a given sort would take based on some assumptions. Including the number of events needed for the downstream experiment and the frequency of the target cell.  

Now the question arises, how to decrease this time?  The answer to that question is to look into getting rid of some of the non-target cells using a depletion technique like magnetic beads. Take the example of 100 million cells with a target cell with a frequency of 0.1%, and needing 100K cells for your downstream application. If we sort at 20K events per second, it would take about 83 minutes to sort. However, if we deplete those cells we don’t need (90%), which would take about 30 minutes, we would be down to only 10 million cells, which we can sort in about 10 minutes. Thus the depletion saves us about 40 minutes. 

“Plan for what is difficult while it is easy, do what is great while it is small.”

At the beginning of the experimental design phase, one thing that should be developed is a statistical analysis plan. By establishing this at the beginning of the experiment, you can avoid common errors such as p-hacking and HARKing, among others.  

More importantly, it also helps to determine the size of the experiment based on the power of the experiment. It is important to remember that you need to plan your experiment based on the amount of resources and money you have. This may mean you cannot answer the original question. For example, trying to prove a 5% difference requires 30 samples of each experiment and control. But you only have funds for 15 samples each. Means you can only prove a 10 or 15% difference. 

The other thing to consider is your threshold, the ⍺ value. This is a measure of the change of committing a Type 1 error. While setting this value, it is worth considering the consequences of that false positive. This handy chart can help  you decide. Don’t rely on the generally accepted standard of 0.05. Rather make sure your threshold is set based on the experimental question. 

“If the enemy leaves a door open, you must rush in.”

We have a plan when we start our experiments. We’re trying to discover some new facts about the cells we are studying. However, sometimes the cells may want to show us something else. I know I am ascribing actions to cells that are not true. But we need to be open to the idea that we may find something unexpected and interesting in our experiments. Especially with high-dimensional experiments, we have opportunities to identify populations previously not observed.  Jonathan Irish called these populations ‘cyto incognito’ as they have been overlooked in more traditional analysis.  

Another way to rush in is to take full advantage of both automated analytical tools and multi ‘omics techniques. Either way, be nimble and ready

“Opportunities multiply as they are seized.”

Flow cytometry is a powerful and evolving technology. To be successful in using flow cytometry, it is important to learn about the best practices in the design and execution of your experiments. Sure, your lab may have a coffee-stained old notebook from the PI’s time in the lab, and everyone goes to that to find the protocols that the lab uses. However, are those still the best practices? For example, when we had 3- and 4- color analog cytometers, we would perform some form of manual compensation. Unfortunately because of how these systems worked and processed data, it was very easy to overcompensate the data. Many experiments were saved because common colors used – FITC, PE, PerCP and APC, played relatively nice with each other, spectrally speaking. 

Nowadays, with numerous parameters being the norm, it’s critical to perform automated compensation following the best practices, such as discussed in this blog. With the proliferation of full spectrum cytometers, automated unmixing is critical.  

Another practice that needs to be consigned to the dustbins of history is the Isotype control. This blog discusses the issue in greater detail. In general, the isotype control can only show if blocking was successful and should not be used to set positivity. 

There are many opportunities for further education, and you should take full advantage of what is available. Your experiments and data will thank you . 

“To know your enemy, you must become your enemy.”

This quote may seem as an odd one to include, but what is the ‘enemy’ of flow cytometry? That is bad data, a failed experiment. These enemies represent lost opportunities and wasted time and money. To determine how to prevent the failure, understand where these failures occur and how to avoid the trap. 

Planning is the key to knowing your enemy. 

This starts with knowing the tools we can use to prevent our enemy from ruining our experiments.  That is the role of our controls. From quality controls to compensation controls, and everything in between can help you understand where the failure popped up.

The assay development stage is the time to explore what controls are critical for you to identify your target populations. It also helps understand the expected ranges that these populations may have. Ensure to have or inspect the quality control work being done by the people overseeing the instrument. That will let you know the machine is behaving appropriately. In fact, don’t be afraid to add your own QC step into your experiment and track that as well. 

Next, we need compensation controls to properly address spectral spillover. Ensure that we can identify our populations in the presence of all the other fluorochromes. Don’t forget the FMO control as well. It is useful in helping to set the negative/positive boundary. 

 Another useful control is a reference control. This is a standard sample that you run with each experiment that behaves in a predictable way in your assay.  

One other trick I like to do when I am running a polychromatic panel is to have a plot of time vs fluorescence for each laser. Since a blockage on the waste side of the instrument can cause a slowdown of the flow. Prevent the cells from being interrogated by the appropriate laser at the correct time. So you will see a loss of signal as shown below.  

Figure 1:  Consequences of blockage after the flow cell on data.

Conclusion

Reading ‘The Art of War’, I was struck by some of Sun Tzu’s advice, military genius by all accounts. This also applies to the science of flow cytometry. In this blog I’ve tried to share with you some of this advice. We will see it applies to flow cytometry experimental design and execution. Perhaps some may see it as a stretch. But to me, anything that helps me remember and take pause as I perform my experiments is a good thing. The statements I’ve shared remind me to be alert as I go about my research efforts.  Let me leave you with one bonus quote that I think doesn’t require much explanation. “You have to believe in yourself.”

To learn more about important control measures for your flow cytometry lab, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

By: Tim Bushnell, PhD

Mastering foundational concepts are imperative for successfully using any technique or system.  Robert Heinlein introduced the term ‘Grok’  in his novel Stranger in a Strange Land. Ever since then it has made its way into popular culture. To Grok something is to understand it intuitively, fully. As a cytometrist, there are several key concepts that you must grok to be successful in your career. These foundational concepts are the key tools that we use day in and day out to identify and characterize our cells of interest.  Cells Flow cytometry measures biological processes at the whole cell level. To do…

4 Critical Rules For Spectral Unmixing

4 Critical Rules For Spectral Unmixing

By: Tim Bushnell, PhD

Spectral unmixing is the mathematical process by which a spectrum is broken down into the abundances of the different fluorochromes that make up the observed spectrum. This was described in the paper by Novo et al., (2013), which presented a generalized model for spectral unmixing of flow cytometry data. Of course, like compensation in traditional fluorescent flow cytometry, there are important rules to observe regarding the controls that are used to unmix the sample. If you need a refresher on the rules for TFF compensation, you can read about them here.    This blog will discuss the generalized process of spectral unmixing…

How To Buy A Flow Cytometer - What You Need To Evaluate From A To Z

How To Buy A Flow Cytometer - What You Need To Evaluate From A To Z

By: Tim Bushnell, PhD

So you have the money to buy a flow cytometer. Is it a sorter? Or perhaps a spectral analyzer? No wait, maybe an imaging mass cytometer?  Big or small?  What to choose?  How to choose?  More importantly, once you sign the contract to purchase the instrument, you don’t want to be struck with buyers remorse.  It is indeed a big decision and we have the best advice for you to consider before making the purchase. Let’s discuss some of the steps you should take to prevent buyers remorse and ensure you are getting the best instrument for your needs.  Do…

How To Do Variant Calling From RNASeq NGS Data

How To Do Variant Calling From RNASeq NGS Data

By: Deepak Kumar, PhD

Developing variant calling and analysis pipelines for NGS sequenced data have become a norm in clinical labs. These pipelines include a strategic integration of several tools and techniques to identify molecular and structural variants. That eventually helps in the apt variant annotation and interpretation. This blog will delve into the concepts and intricacies of developing a “variant calling” pipeline using GATK. “Variant calling” can also be performed using tools other than GATK, such as FREEBAYES and SAMTOOLS.  In this blog, I will walk you through variant calling methods on Illumina germline RNASeq data. In the steps, wherever required, I will…

How small can you go? Flow cytometry of bacteria and viruses

How small can you go? Flow cytometry of bacteria and viruses

By: Tim Bushnell, PhD

Flow cytometers are traditionally designed for measuring particles, like beads and cells. These tend to fall in the small micron size range. Looking at the relative size of different targets of biological interest, it is clear the most common targets for flow cytometry (cells) are comparatively large (figure 1). Figure 1:  Relative size of different biological targets of interest. Image modified from Bioninja.    In the visible spectrum, where most of the excitation light sources reside, it is clear the cells are larger than the light. This is important as one of the characteristics that we typically measure is the amount…

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

By: Tim Bushnell, PhD

As the labeled cell passes through the interrogation point, it is illuminated by the excitation lasers. The fluorochromes, fluoresce; emitting photons of a higher wavelength than the excitation source. This is typically modeled using spectral viewers such as in the figure below, which shows the excitation (dashed lines) and emission (filled curves) for Brilliant Violet 421TM (purple) and Alexa Fluor 488Ⓡ (green).  Figure 1: Excitation and emission profiles of BV421TM and AF488Ⓡ  In traditional fluorescent flow cytometry (TFF), the instrument measures each fluorochrome off an individual detector. Since the detectors we use — photomultiplier tubes (PMT) and avalanche photodiodes (APD)…

How To Extract Cells From Tissues Using Laser Capture Microscopy

How To Extract Cells From Tissues Using Laser Capture Microscopy

By: Tim Bushnell, PhD

Extracting specific cells still remains an important aspect of several emerging genomic techniques. Prior knowledge about the input cells helps to put the downstream results in context. The most common isolation technique is cell sorting, but it requires a single cell suspension and eliminates any spatial information about the microenvironment. Spatial transcriptomics is an emerging technique that can address some of these issues, but that is a topic for another blog.  So what does a researcher who needs to isolate a specific type of cell do? The answer lies in the technique of laser capture microdissection (LCM). Developed at the National…

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

By: Tim Bushnell, PhD

Incorporating quality control as a part of the optimization process in  your flow cytometry protocol is important. Take a step back and consider how to build quality control tracking into the experimental protocol.  When researchers hear about quality control, they immediately shift their attention to those operating and maintaining the instrument, as if the whole weight of QC should fall on their shoulders.   It is true that core facilities work hard to provide high-quality instruments and monitor performance over time so that the researchers can enjoy uniformity in their experiments. That, however, is just one level of QC.  As the experimental…

Understanding Clinical Trials And Drug Development As A Research Scientist

Understanding Clinical Trials And Drug Development As A Research Scientist

By: Deepak Kumar, PhD

Clinical trials are studies designed to test the novel methods of diagnosing and treating health conditions – by observing the outcomes of human subjects under experimental conditions.  These are interventional studies that are performed under stringent clinical laboratory settings. Contrariwise, non-interventional studies are performed outside the clinical trial settings that provide researchers an opportunity to monitor the effect of drugs in real-life situations. Non-interventional trials are also termed observational studies as they include post-marketing surveillance studies (PMS) and post-authorization safety studies (PASS). Clinical trials are preferred for testing newly developed drugs since interventional studies are conducted in a highly monitored…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.