How To Create The Right Flow Cytometry Antibody Panel Every Time

Sudoku puzzles seem to be all the rage.

I see it in coffeehouses, at the airport, even in doctors offices. Everyone is trying to work out how to fit the numbers into the grids so that everything adds up properly.

Designing polychromatic flow cytometry panels is much like the Sudoku puzzle.

In this case, the grid is composed of the antigens on one side, and the cytometer detectors on the other.

The goal is to fill in the grid correctly.  

Instead of adding up to 45, like in Sudoku, the flow cytometrist is trying to optimize the ability to make a sensitive measurement to answer the biological question the researcher has set out to answer.

Solving the Polychromatic Sudoku puzzle, so to speak, is easy if you follow a few simple steps.

Step 1:  Establish a biological hypothesis.

Everything starts with understanding what the biological hypothesis for the experiments to be performed. This will dictate what populations need to be identified, and what information needs to be extracted from the data.

As you proceed, rank your antibodies based on cellular expression level and importance in answering the biological hypothesis.

For example, CD3 is a highly expressed antigen on T-cells and is important in making primary gating decisions, while CD86 is a dimly expressed (or emergent) marker on cells undergoing activation and may be critical to answer the biological hypothesis.

Step 2:  Research your fluorochromes.

Fluorochrome brightness can be measured and the different fluorochromes ranked against each other.

Use a chart like this one from BioLegend where fluorochromes are ranked from brightest (5) to most dim (1).

Based on the brightness of fluorochromes and the expression density of the antigen on the cells, we want to pair highly expressed antigens (like CD3) with dimmer fluorochromes (1-2), while lower expression antigens are paired with brighter fluorochromes (4,5).

Step 3:  Know the instrument you’re using.

Aim to understand your flow cytometer before designing your antibody panel. Pay particular attention to where the most sensitive measurements can be made on the system. Everything doesn’t boil down to just fluorescence intensity.

Sometimes, it is better to use a less bright fluorochrome if… if the channel does not receive a lot of error.

Below is an example Excel analysis of the spillover of fluorochromes into different detectors on a 4-laser instrument (405, 488. 532. 633).  Summing across results in the error that that a given detector receives from the flurorchromes in the panel. Summing down the columns results in the amount of error a given fluorochrome contributes to the panel in question.

Flow Cytometry Antibody Panel Design

These data are based on the calculations found in Nguyen et al. (2013) Cytometry A 83A:306-315

Using the above analysis, one can make an informed decision where the best fluorochrome choices are to make sensitive measurements.

Step 4:  Use a panel building program.  

It becomes critical to find all the antigen-fluorochrome pairs that are available.

While it is possible to search through catalogues and use Google, there are packages out there that can be used to help this process, for example:

Chromocyte – a web-based system panel building system and a resource website.

Fluorofinder – a new resource with a web-based interface for panel building.

With these tools, the searching for reagents becomes easy, leaving time to build the panels using the theory described above.

Step 5: Optimize your panel. 

After all is said and done, the panel must be optimized and validated.  Proper antibody titration, the correct voltages, optimized staining protocols to minimize non-specific binding and such are all part of the long, but very critical process to ensure that the panel works appropriately.

Step 6:  Bring on the OMIP.

OMIP is short for Optimized Multicolor Immunophenotyping Panel, which is a peer-reviewed, optimized flow panel. The beauty of the OMIP is the work is already done for you, including the antigens to be used, the fluorochromes, and the analysis template.

There are currently over 23 OMIPs, all of which can save you the headache of building a panel from scratch.

Of course, there are still an uncountable number of antibody panels for which no OMIP exists. If you’re designing a new antibody panel, or are stuck after several attempts to optimize a existing panel, get expert help. Don’t keep wasting time and resources on an incorrectly designed panel.

To learn more about automatic compensation and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

6 Areas Of Consideration For Flow Cytometry Cell Cycle Analysis

6 Areas Of Consideration For Flow Cytometry Cell Cycle Analysis

By: Tim Bushnell, PhD

Cell cycle seems like such a straightforward assay. At its heart, it is a one-color assay and should be a simple protocol to follow. However, as discussed before, fixation and dye concentrations are critical. Once those are optimized, it becomes important to run the cells low and slow in order to get the best quality histograms for analysis — the topic of another blog. Adding the critical CEN and TEN controls will help standardize the assay, and ensure consistency and reproducibility between runs while helping identify non-standard (aneuploid, polyploid) populations from normal ploidy. Trying to isolate and focus on specific…

Why Cell Cycle Analysis Details Are Critical In Flow Cytometry

Why Cell Cycle Analysis Details Are Critical In Flow Cytometry

By: Tim Bushnell, PhD

Cell cycle analysis appears to be deceptively easy in concept, but details are absolutely critical. It is not possible to hide the data if there is poor sample preparation, incorrect dye ratios, too much (or too little) staining time, etc. Forgetting RNAse when using PI will doom your data to failure. Take these basics into account as you move into performing this simple, yet amazingly informative assay.

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

By: Tim Bushnell, PhD

With the added emphasis on reproducibility, it is critical to look at every step where experiments can be improved. No single step makes an experiment more reproducible, rather it is a process, making changes at each stage that leads to reproducibility. Antibodies comprise a critical component that needs to be reviewed. As Bradbury et al. in a commentary in Nature pointed out, the global spending on antibodies is about $1.6 billion a year, and it is estimated about half of that money is spent on “bad” antibodies. This does not include the additional costs of wasted time and effort by…

5 Essential Beads For Flow Cytometry Experiments

5 Essential Beads For Flow Cytometry Experiments

By: Tim Bushnell, PhD

Flow cytometry is designed to measure physical and biochemical characteristics of cells and cell-like particles using fluorescence. Fundamentally, any single-particle suspension (within a defined size range) can pass through the flow cytometer. Beads, for better or worse, are a sine qua non for the flow cytometrist. From quality control,to standardization, to compensation, there is a bead for every job. They are important — critical, even — for flow cytometry.

How To Use Flow Cytometry To Measure Apoptosis, Necrosis, and Autophagy

How To Use Flow Cytometry To Measure Apoptosis, Necrosis, and Autophagy

By: Tim Bushnell, PhD

Using flow cytometry and a host of different reagents, it is possible to tease out how your cells may have died. Using these tools, you can readily eliminate the various suspects and come to your conclusion as to how your treatment may have killed your cells of interest. Here are some reagents to consider when measuring apoptosis, necrosis, and autophagy.

Flow Cytometry Protocols To Prevent Sample Clumping

Flow Cytometry Protocols To Prevent Sample Clumping

By: Tim Bushnell, PhD

Good flow cytometry depends on a high quality, single cell suspension. If the cells put through the instrument are not of high quality, the ensuing data will be difficult to analyze. Likewise, if the sample is clumpy, one will not be able to readily distinguish cells of interest from the clumps they are attached to. Sample preparation becomes the critical first step in any flow cytometry experiment. To get high quality results, follow these 3 sample preparation steps.

How To Compensate A 4-Color Flow Cytometry Experiment Correctly

How To Compensate A 4-Color Flow Cytometry Experiment Correctly

By: Tim Bushnell, PhD

Compensation in flow cytometry is a critical step to ensure accurate interpretation of data. It is also one of the areas that’s steeped in mystery, myths and misinformation. Manually adjusting the compensation values based on how the populations look, or so-called ‘Cowboy Compensation’, is not the correct way to determine proper compensation. The best practices for compensation involve following some very specific rules. Here are 4 steps to correctly compensating 4+ color flow cytometry experiments.

How To Differentiate T-Regulatory Cells (Tregs) By Flow Cytometry

How To Differentiate T-Regulatory Cells (Tregs) By Flow Cytometry

By: Tim Bushnell, PhD

T regulatory cells (Tregs), formerly known as T suppressor cells, are a T cell subset with direct roles in both autoimmunity and responses to pathogens. Tregs decrease inflammation via the secretion of immunosuppressive cytokines (IL-10, TGF-b) and also through direct suppression of inflammatory effector T cells (such as Th1 and Th17 cells). Given the importance of this unique T cell subset in so many immune responses, many investigators feel remiss if they immunophenotype their cell populations of interest without including a Treg measurement in the mix. But quantifying Tregs can be complicated. This article will show you how to quantify…

How Cell Culture Medium Can Decrease Cell Viability During A Flow Cytometry Cell Sorting Experiment

How Cell Culture Medium Can Decrease Cell Viability During A Flow Cytometry Cell Sorting Experiment

By: Tim Bushnell, PhD

When setting up a cell sorting experiment, there are many things to consider. You must consider which controls you’re going to use, how you’re going to compensate the experiment, which instrument and which instrument settings are ideal, and how you plan to analyze, gate, and present your data. With so many things to consider, it’s easy to lose site of the small things that can drastically affect the viability of your cells, including the composition of your suspension buffer. The composition of the suspension buffer for preparation, staining, analyzing and sorting is perhaps the most important parameter for maintaining viability…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.