7 Tips For Measuring And Reporting Apoptosis By Flow Cytometry

Cell death is a fact of biological life.  How, when, where and most importantly, why cells die, can have huge biological consequences on the path an organism may take.

Apoptosis, or programed cell death, can result in a selective advantage for an organism. Fingers, for example, are the result of apoptosis of cells during development.

Next to immunophenotyping, measuring apoptosis using flow cytometry is one of the most common assays. It may be because of the many different ways to measure the process, many of which can be easily performed in a high-throughput manner, or combined with other assays to determine if specific cellular subsets are sensitive to a given drug or treatment.

This subject was so critical to understanding cellular functions that the Nobel Prize committee recognized the study of apoptosis as seminal and in 2002, the prize in Medicine was awarded to Sydney Brenner, Robert Horvitz and John Sulston for their work on the subject.

7 Apoptosis Tips

Annexin V is a calcium dependent protein that binds preferentially to phosphaditylserines. These phospholipids typically are inward facing, but are flipped to the extracellular side of the membrane as one of the early signals of apoptosis. Coupled with a membrane impermeant dye (like 7AAD or PI), early and late apoptosis can be characterized.

Here are 7 tips for performing your next apoptosis assay using Annexin V and a membrane impermeant dye:

1.  Make sure you use the correct buffer. 

Annexin V is dependent on calcium for binding. When performing this assay, make sure to use a calcium containing buffer during the labeling process.

2.  Annexin V binding is not stable. 

Unlike antibody binding, the Annexin binding is not that stable. It also doesn’t fix well. Thus, it is critical to read these samples shortly after labeling – typically between 1 to 3 hours from the point of labeling.

3. Pick the right assay.

Inducing apoptosis can be done with a host reagents. Make sure the reagent being used induces apoptosis and not necrosis. Sub-G1 fragmentation is an oft mis-used method for detecting apoptosis. In this assay, low-fragment DNA is measured by standard DNA binding dyes, appearing to the left of the G1 peak on a DNA histogram. However, if the assay is not performed correctly, estimates will be off.

4. Watch your fixation.

Formaldehyde fixatives tend to cause the small DNA fragments to be retained, and thus underestimating the apoptosis.

5.  Consider TUNEL.

TdT-mediated dUTP nick end labeling. Using terminal deoxynucleotidyltransferase (TdT), the ends of DNA breaks are labeled with dUTP that can be later detected using an anti-BrdU antibody. In this case, you do need to use formaldehyde fixation. You also don’t need to perform DNA denaturation, as the smaller fragments are readily accessible to the antibody. Loss of mitochondrial membrane potential is another early hallmark of early apoptosis. In cells undergoing apoptosis, the mitochondria will release cytochrome C and the apoptosis inducing factor – both of which are necessary of caspase activation (another critical step in apoptosis).

6. Choose your dye carefully.

Three common dyes are Rhodamine 123, 3,3’-dihexyloxacarbocyanine iodide, and JC-1. R123 should be coupled with a dye like PI so that live (cells staining with R123), early apoptotic (cells lost the ability to accumulate R123) and late apoptotic (PI positive cells). JC-1, on the other hand goes from a green fluorescence to an orange fluorescence in cells undergoing apoptosis.

7. Don’t over-interpret the data.

Some papers suggest that the collapse of the mitochondria membrane potential may not be a critical step in apoptosis. The list of possible assays goes on. Detection of activated caspases, either directly with antibodies, or by activity, can be a very informative assay as well. In the end, each assay offers strengths and weaknesses. Understanding what the output is and how the assay is to be combined with other readouts. Likewise, knowing a bit about the process of apoptosis in the cells of interest is critical.

To learn more about performing apoptosis assays by flow cytometry, including how to publish your apoptosis data, join our special webinar Thursday, November 6th: How Measure, Analyze, And Publish Apoptosis By Flow Cytometry

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

By: Tim Bushnell, PhD

In the flow cytometry community, SPADE (Spanning-tree Progression Analysis of Density-normalized Events) is a favored algorithm for dealing with highly multidimensional or otherwise complex datasets. Like tSNE, SPADE extracts information across events in your data unsupervised and presents the result in a unique visual format. Given the growing popularity of this kind of algorithm for dealing with complex datasets, we decided to test the SPADE algorithm in 5 software packages, including Cytobank, FCS Express, FlowJo, R, and the original, free software made available by the author of SPADE. Which was the fastest?

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

By: Tim Bushnell, PhD

FlowJo is a powerful tool for performing and analyzing flow cytometry experiments, if you know how to use it to the fullest. This includes understanding embedding and using keywords, the FlowJo compensation wizard, spillover spreading matrix, FlowJo and R, and creating tables in FlowJo. Extending your use of FJ using these hacks will help organize your data, improve analysis and make your exported data easier to understand and explain to others. Take a few moments and explore all you can do with FJ beyond just gating populations.

Statistical Challenges Of Rare Event Measurements In Flow Cytometry

Statistical Challenges Of Rare Event Measurements In Flow Cytometry

By: Tim Bushnell, PhD

It is necessary to sort through hundreds of thousands or millions of cells to find the few events of interest. With such low event numbers, we move away from the comfortable domain of the Gaussian distribution and move into the realm of Poisson statistics. There are 3 points to consider to build confidence in the data that the events being counted are truly events of interest and not random events that just happen to fall into the gates of interest.

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

By: Tim Bushnell, PhD

Preparing for rare event analysis requires an understanding of the power and limitation of the instrument to be used. From how fast to run the fluidics, to how the signal is processed to the number of gates that can be used in the sorting experiment, each factor impacts the outcome of the experiment.

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

By: Tim Bushnell, PhD

With the added emphasis on reproducibility, it is critical to look at every step where experiments can be improved. No single step makes an experiment more reproducible, rather it is a process, making changes at each stage that leads to reproducibility. Antibodies comprise a critical component that needs to be reviewed. As Bradbury et al. in a commentary in Nature pointed out, the global spending on antibodies is about $1.6 billion a year, and it is estimated about half of that money is spent on “bad” antibodies. This does not include the additional costs of wasted time and effort by…

How To Achieve Accurate Flow Cytometry Calcium Flux Measurements

How To Achieve Accurate Flow Cytometry Calcium Flux Measurements

By: Tim Bushnell, PhD

Dyes exist for the detection of everything from large nucleic acids to reactive oxygen species, and from lipid aggregates to small ions. Concentrations of physiologically important ions such as sodium, potassium, and calcium can be important indicators of health and disease. Calcium ions play an especially critical role in cellular signaling. As a signaling messenger, calcium is involved in everything from muscle contractions, to cell motility, to enzyme activity. Calcium experiments can be very informative, and with the advent of cheaper UV lasers, more and more researchers can use ratiometric measurements to evaluate the signaling processes in phenotypically defined populations.

How to Perform Doublet Discrimination In Flow Cytometry

How to Perform Doublet Discrimination In Flow Cytometry

By: Tim Bushnell, PhD

You are probably familiar with the term, “doublet discrimination” or “doublet exclusion”, and have likely included this flow cytometry measurement into at least some (if not all) of your gating strategies. Even though you may utilize this important gating strategy, you may not have had the chance to delve deeper to explore exactly what doublets are and why it’s critical to exclude them. This article aims to give you insight on the what, why, and how of doublet discrimination.

4 Considerations For Assessing Protein Phosphorylation Using Flow Cytometry

4 Considerations For Assessing Protein Phosphorylation Using Flow Cytometry

By: Tim Bushnell, PhD

For those working in the signaling field, having the ability to take a sample and phenotypically identify it, while knowing what is happening inside the cell to the target molecules of choice opens up a host of new opportunities. These assays are amenable to high throughput setup, meaning that biologically relevant outcomes in pre-clinical drug discovery can be measured directly. All told, with a little forethought, some careful planning and validation, and our helpful tips, phosphoflow assays are within your reach.

5 Essential Calculations For Accurate Flow Cytometry Results

5 Essential Calculations For Accurate Flow Cytometry Results

By: Tim Bushnell, PhD

Flow cytometry is a numbers game. There are percentages of a population, fluorescence intensity measurements, sample averages, data normalization, and more. Many of these common calculations are useful, but surrounded by misconceptions. This primer will help you decide which calculation to use, when to use it, and how to interpret the results.

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.