5 Flow Cytometry Errors Reviewers Despise

We all know that flow cytometry makes individual measurements on large populations of cells, it allows for statistical analysis of the data, lending strength to a researcher’s conclusions.

Likewise, the isolation of very complex populations by flow cytometry cell sorting can help lead to a richer understanding of the intricate biology at the genomic, proteomic and functional level.

As a reviewer of papers and grants, I am always especially interested in the details of HOW the experiments were performed because that is the critical foundation for what the data is able to tell us–and what it can NOT tell us.

Mistakes That Mark You As Untrained

It may sound harsh but there are some errors that reviewers hate seeing. The good news is that by learning what reviewers dislike (or even despise), you can learn how to run better and more accurate experiments. Here are 5 errors reviewers really don’t like seeing:

1. Failure to plan out the entire experiment from the end backwards.

Consider the statistics you will need to show in your grant or paper at the very beginning. Before the first reagent is ordered or cells processed, it is critical to start at the end. This means understanding the biological hypothesis and what statistical approaches will be used to test the significance of that hypothesis.

As noted statistician Frank Anscombe once wrote, “What is important is that we realize what the problem really is, and solve that problem as well as we can, instead of inventing a substitute problem that can be solved exactly but is irrelevant (1).”

Understanding the hypothesis and how it will be tested will lead the researcher down the path of experimental design to data analysis to statistical testing. As a bonus, by preparing for the statistical testing, the power of the experiment can be calculated so that sufficient samples are collected to provide confidence in the final results.

2.  Failure to design the proper antibody panel. 

After understanding the biological hypothesis, the process of panel design can begin. This multi-step process begins with understanding what populations will be examined, and if the end result is the change in population percentages or the expression of one or more markers.

Based on this, knowledge of the instrument, and fluorochromes’ possible panels can be developed to minimize compensation issues and loss of resolution in the channels of critical importance. When designing a panel don’t leave out a dump channel or a viability dye. At the same time, don’t give either of these two things top priority when designing your panel.

3. Failure to optimize the experiment. 

These optimization steps must include:

A.  Titration of the reagents. All reagents used in any flow cytometry experiment should be titrated and optimized. The goal with this is to get the best signal-to-noise ratio and minimize background pollution.

B.  PMT voltage. A bead-based measurement of the PMT sensitivity will ensure the experiment is run at a voltage where the PMT is most sensitive. These voltages can be further adjusted for specific cell/fluorochrome combinations, which will further optimize the sensitivity of the assay.

4.  Failure to use the right controls. 

A significant amount of time and effort goes into successfully performing a flow cytometry assay, including building a robust polychromatic panel, determining the correct controls, and performing a reproducible analysis. The last thing a researcher wants to have happen is that his or her discovery is disproven because of an instrument issue rather than a true biological change.

While Shared Resource Laboratories and Core Facilities spend a great deal of time on the QC of their instruments, the best researchers incorporate QC into their experiments as well. These QC tubes include a method for ensuring the PMT voltage is consistent between experiments, a method for ensuring the experiment is performed correctly and a method for ensuring the gating strategy is robust.

5.  Failure to provide the details of their display and gating strategies.  

It is critical for the final data presentation to be robust and reproducible. In showing the gating strategy (even in supplemental data), explain how each region was placed. Questions such as what controls were used and whether or not cutoff percentages employed should be discussed.

With digital data, make sure that any transformation of the data is revealed and how they were consistently applied. Avoid the use of univariate plots (histograms), and be sure to ensure the total amount of data on the plots is revealed–so that the magnitude of the experiment is understood.

Finally, don’t rely on just the figures. Flow cytometry data can be very quantative, so report the data as a table when possible too.

To learn more about preparing and publishing your flow cytometry data, become a Mastery Class member

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

4 Critical Rules For Spectral Unmixing

4 Critical Rules For Spectral Unmixing

By: Tim Bushnell, PhD

Spectral unmixing is the mathematical process by which a spectrum is broken down into the abundances of the different fluorochromes that make up the observed spectrum. This was described in the paper by Novo et al., (2013), which presented a generalized model for spectral unmixing of flow cytometry data. Of course, like compensation in traditional fluorescent flow cytometry, there are important rules to observe regarding the controls that are used to unmix the sample. If you need a refresher on the rules for TFF compensation, you can read about them here.    This blog will discuss the generalized process of spectral unmixing…

How To Buy A Flow Cytometer - What You Need To Evaluate From A To Z

How To Buy A Flow Cytometer - What You Need To Evaluate From A To Z

By: Tim Bushnell, PhD

So you have the money to buy a flow cytometer. Is it a sorter? Or perhaps a spectral analyzer? No wait, maybe an imaging mass cytometer?  Big or small?  What to choose?  How to choose?  More importantly, once you sign the contract to purchase the instrument, you don’t want to be struck with buyers remorse.  It is indeed a big decision and we have the best advice for you to consider before making the purchase. Let’s discuss some of the steps you should take to prevent buyers remorse and ensure you are getting the best instrument for your needs.  Do…

How small can you go? Flow cytometry of bacteria and viruses

How small can you go? Flow cytometry of bacteria and viruses

By: Tim Bushnell, PhD

Flow cytometers are traditionally designed for measuring particles, like beads and cells. These tend to fall in the small micron size range. Looking at the relative size of different targets of biological interest, it is clear the most common targets for flow cytometry (cells) are comparatively large (figure 1). Figure 1:  Relative size of different biological targets of interest. Image modified from Bioninja.    In the visible spectrum, where most of the excitation light sources reside, it is clear the cells are larger than the light. This is important as one of the characteristics that we typically measure is the amount…

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

By: Tim Bushnell, PhD

As the labeled cell passes through the interrogation point, it is illuminated by the excitation lasers. The fluorochromes, fluoresce; emitting photons of a higher wavelength than the excitation source. This is typically modeled using spectral viewers such as in the figure below, which shows the excitation (dashed lines) and emission (filled curves) for Brilliant Violet 421TM (purple) and Alexa Fluor 488Ⓡ (green).  Figure 1: Excitation and emission profiles of BV421TM and AF488Ⓡ  In traditional fluorescent flow cytometry (TFF), the instrument measures each fluorochrome off an individual detector. Since the detectors we use — photomultiplier tubes (PMT) and avalanche photodiodes (APD)…

How To Extract Cells From Tissues Using Laser Capture Microscopy

How To Extract Cells From Tissues Using Laser Capture Microscopy

By: Tim Bushnell, PhD

Extracting specific cells still remains an important aspect of several emerging genomic techniques. Prior knowledge about the input cells helps to put the downstream results in context. The most common isolation technique is cell sorting, but it requires a single cell suspension and eliminates any spatial information about the microenvironment. Spatial transcriptomics is an emerging technique that can address some of these issues, but that is a topic for another blog.  So what does a researcher who needs to isolate a specific type of cell do? The answer lies in the technique of laser capture microdissection (LCM). Developed at the National…

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

By: Tim Bushnell, PhD

Incorporating quality control as a part of the optimization process in  your flow cytometry protocol is important. Take a step back and consider how to build quality control tracking into the experimental protocol.  When researchers hear about quality control, they immediately shift their attention to those operating and maintaining the instrument, as if the whole weight of QC should fall on their shoulders.   It is true that core facilities work hard to provide high-quality instruments and monitor performance over time so that the researchers can enjoy uniformity in their experiments. That, however, is just one level of QC.  As the experimental…

How To Optimize Instrument Voltage For Flow Cytometry Experiments  (Part 3 Of 6)

How To Optimize Instrument Voltage For Flow Cytometry Experiments (Part 3 Of 6)

By: Tim Bushnell, PhD

As we continue to explore the steps involved in optimizing a flow cytometry experiment, we turn our attention to the detectors and optimizing sensitivity: instrument voltage optimization.  This is important as we want to ensure that we can make as sensitive a measurement as possible.  This requires us to know the optimal sensitivity of our instrument, and how our stained cells are resolved based on that voltage.  Let’s start by asking the question what makes a good voltage?  Joe Trotter, from the BD Biosciences Advanced Technology Group, once suggested the following:  Electronic noise effects resolution sensitivity   A good minimal PMT…

Optimizing Flow Cytometry Experiments - Part 2         How To Block Samples (Sample Blocking)

Optimizing Flow Cytometry Experiments - Part 2 How To Block Samples (Sample Blocking)

By: Tim Bushnell, PhD

In my previous blog on  experimental optimization, we discussed the idea of identifying the best antibody concentration for staining the cells. We did this through a process called titration, which  focuses on finding the best signal-to-noise ratio at the lowest antibody concentration. In this blog we will deal with sample blocking As a reminder, there are two other major binding concerns with antibodies. The first is the specific binding of the Fc fragment of the antibody to the Fc Receptor expressed on some cells. This protein is critical for the process of destroying microbes or other cells that have been…

How To Determine The Optimal Antibody Concentration For Your Flow Cytometry Experiment (Part 1 of 6)

How To Determine The Optimal Antibody Concentration For Your Flow Cytometry Experiment (Part 1 of 6)

By: Tim Bushnell, PhD

Over the next series of blog posts, we will explore the different aspects of optimizing a polychromatic flow cytometry panel. These steps range from figuring out the best voltage to use, which controls are critical for data interpretation, what quality control tools can be integrated into the assay; how to block cells, and more. This blog will focus on determining the optimal antibody concentration.  As a reminder about the antibody structure, a schematic of an antibody is shown below.  Figure 1: Schematic of an antibody. Figure from Wikipedia. The antibody is composed of two heavy chains and two light chains that…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.