How To Use A Threshold To Reduce Background Noise In Flow Cytometry

On most flow cytometers, the photomultiplier tube (PMT) is the interface between the fluidics system and the electronics system. It is the PMT that converts the photons emitted from the fluorochromes into the electronic current that is digitized and ultimately converted to the value stored in the listmode file.

Any stray photon of light or random electron emission from a dynode will cause a cascade, and ultimately a photocurrent. This is often known as dark current. The figure below shows the idealized idea behind this concept.

Dark current signal noise in a flow cytometer

Figure 1: Stylized signal coming off a PMT showing the dark current and actual signals of cells passing the laser intercept.

As this figure shows, if each of these peaks is counted, there would be over 50 ‘events’ seen by the flow cytometer. Most of these events would be considered junk or debris.

Imagine if each of these events was recorded in the listmode file — how large would the file be?

To reduce this background noise in the system, we can use something called a threshold.

The threshold is a value that the signal must be above before the system will call a pulse an ‘event’.

If one enforces a threshold, the resulting pulse would look like this:

Stylized flow cytometer signal with threshold added

Figure 2: Stylized signal with a threshold added.

This threshold now reduces the signal from over 50 events down to just two. A much more manageable file size and analysis will be able to be performed by removing this noise.

1. Thresholding reduces background noise in the flow cytometer.

Thresholding is a powerful tool for reducing the signal caused by debris and dark current present in the flow cytometer.

Thresholding is a useful tool in reducing the debris that can overwhelm your datafile.

When computer storage was more expensive, and computers less powerful, it was much more heavily used.

Judicious use of threshold is warranted. However, it is also important to remember that if the flow cytometer doesn’t see an event, it doesn’t mean that the event is not present in the sample. This is especially true when sorting cells.

Here is an example of the effects of increasing the threshold on populations. These are CS&T beads run on a FACSAria, with an increasing threshold from 5,000 to 50,000 on the forward scatter parameter. A total of 20,000 events was collected for each file. Two gates (small and sort) are indicated.

Effect of increasing a threshold on flow cytometer signals

Figure 3: Effects of increasing threshold on CS&T beads.

As can be seen by this data, increasing the threshold, decreasing the amount of debris seen in these beads, and the percentage of events in each gate, changes. These values are shown below.

Table 1: Percentage of cells in the two gates from Figure 3.

Cells in 2 gates at the cytometer

2. Thresholding removes smaller events.

Thresholding increases the percentage of target events in the datafile by removing the smaller events.

If one was performing immunophenotyping analysis, for example, the increased threshold resulting in a loss of the events in the ‘small gate’ would probably not be of concern. However, if one was to sort based on these different thresholds, a very different picture emerges.

The sort logic for this experiment is shown below, as generated in DIVA.

Threshold sorting strategy

Figure 4: Sorting Strategy for Threshold Sorting Data.

After sorting the beads at different threshold levels, a post-sort analysis was performed on the instrument. Before the beads were placed back on the system, the threshold was reset to 5,000 and a wash was performed for two minutes, and the data from that wash shows the amount of background noise in the system.

A total of 89 events were observed in two minutes, with two of these events in the ‘small gate’ and none in the ‘sort gate’.

Water wash background noise in a flow cytometry experiment

Figure 5: Results of a two-minute water wash showing the background noise in the system after sorting beads.

The results of the pre- and post-sorts are shown in figure 6. This is data from the ‘bright cells’ sort is shown, and the beads were sorted on purity mode.

Flow cytometry experiment sort analysis chart

Figure 6: Results of pre- and post-sort analysis at either 10,000 or 50,000 threshold on forward scatter. Post sort analysis was performed with a threshold of 5,000.

Table 2: Data from sort gates in Figure 6

Data from sort gates

The numbers tell the tale.

At a low threshold, the purity of the post-sort population of interest is extremely high, with only a minor contamination of the events in the ‘small gate’. However, when the instrument is blinded to the small events (via a high threshold), the post-sort analysis shows that there is significant contamination and much lower purity.

Since the system could not see the small events, it was not possible for these events to be excluded, thus the small events were sorted AT RANDOM into the collection tube, because the system did not abort those droplets where a small event was in the leading or lagging droplet.

While increasing the threshold will speed up the rate of acquisition of the events of interest, the effect of increasing the threshold must be weighed against the sensitivity of the downstream application.

If the cells are to be cultured, this debris may be tolerated. If the downstream analysis is a very sensitive technique, such as RNAseq, this debris might not be tolerated. It pays to be careful with the threshold to avoid surprises — like having your highly purified cell population contaminated with a host of unexpected genes (say 𝛃-globin).

Adding a threshold when acquiring flow cytometry data is like putting on sunglasses on a sunny day. It reduces the number of events by setting a bar that a signal pulse must clear before it is counted as an event. Depending on the importance of the data, the downstream applications for the data (or sorted cells) will dictate how critical the threshold is. Threshold wisely and practice proper sample preparation to reduce the debris in the tube to ensure the best outcome.

To learn more about how to use a threshold to reduce background noise in Flow Cytometry, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

5-Point Guide To Buying A New Microscope For Your Lab

5-Point Guide To Buying A New Microscope For Your Lab

By: Heather Brown-Harding, PhD

Have you ever noticed how painful it can be to purchase a new microscope? It would be hard to miss – this can be a frustrating process. A lot of scientists and students consider the new microscope hunt quite scary for a variety of reasons. It might be that you’re worried you won’t get the right microscope and that you’ll regret it, or you may find that dealing with salespeople, in general, makes you kind of uncomfortable. But remember, salespeople are just human beings like you and me, and if we can treat them as such, the whole process of…

Ask These 7 Questions Before Purchasing A Flow Cytometer

Ask These 7 Questions Before Purchasing A Flow Cytometer

By: Tim Bushnell, PhD

I am still convinced that my first cell sorter was possessed. The number of issues that I had with the system remains hard for me to believe, even after all these years. It had been purchased, in part, from one vendor because the sales rep for a competitor was nowhere to be found. At that time, I admit I wasn’t overly diligent in my research process. Since then, I’ve pinpointed some critical questions that need to be answered before purchasing a new instrument. At the end of the process, a shiny new instrument will arrive at your facility. Make sure…

Instrument Quality Control For Reproducible Flow Cytometry Experiments

Instrument Quality Control For Reproducible Flow Cytometry Experiments

By: Tim Bushnell, PhD

The flow cytometer is an integral component of any flow cytometry experiment, and special attention should be paid to ensuring that it is working correctly and consistently. As an end-user, the researcher should be able to sit down at a machine and know that it is performing the same way today as it was yesterday and last week. Equally important is that if any changes in instrument performance have occured, the end-user knows how they have been addressed and corrected, rather than letting them fester and potentially affect the results. Quality control measurements can include a variety of targets, such…

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

By: Tim Bushnell, PhD

Preparing for rare event analysis requires an understanding of the power and limitation of the instrument to be used. From how fast to run the fluidics, to how the signal is processed to the number of gates that can be used in the sorting experiment, each factor impacts the outcome of the experiment.

3 Ways The ZE5 Cell Analyzer Accelerates Flow Cytometry Research Opportunities

3 Ways The ZE5 Cell Analyzer Accelerates Flow Cytometry Research Opportunities

By: Tim Bushnell, PhD

Some technological advances are incremental, while others are significant game-changing tools that offer the researcher the ability to significantly improve current assays while allowing for new and novel avenues of research to be performed. With speed, sensitivity, and capacity to spare, the ZE5 fits into the game-changing category. Reduced carryover, increased speed of acquisition, and a large number of parameters all open up new and novel assays while improving the quality and reproducibility of ongoing ones.

3 Advantages Of Using The ZE5 Cell Analyzer

3 Advantages Of Using The ZE5 Cell Analyzer

By: Tim Bushnell, PhD

Since the first laser was mounted to create the first flow cytometer, there has been a push for more - more lasers, more detectors, more colors. As a result, today’s researchers require a large number of lasers and detectors to ensure current panels can be run and new, expanded panels can be developed. This can be problematic because, in general, making one decision to improve a cell analyzer can limit the analyzer in other ways. It may seem like an impossible task, but the team of Bio-Rad and Propel Laboratories, collaborated to bring the ZE5™ Cell Analyzer to the market…

3 Advantages FCS Express 6 Has Over Other Flow Cytometry Data Analysis Software Programs

3 Advantages FCS Express 6 Has Over Other Flow Cytometry Data Analysis Software Programs

By: Tim Bushnell, PhD

FCS Express is the ideal data analysis software program to use when analyzing your flow cytometry experiments because it is the most user-friendly program available that is both aligned with current data analysis best practices and maintains rigorous quality control standards.

How To Set And Monitor Optimal Voltages For A Flow Cytometry Experiment

How To Set And Monitor Optimal Voltages For A Flow Cytometry Experiment

By: Tim Bushnell, PhD

The best way to take out the fear and agony of setting voltages is to use some optimization methods. The peak 2 method is a useful and robust method of identifying optimal PMT voltage ranges. Refining that to the voltage walk with the actual cells and fluorochromes of interest will further improve sensitivity, which is especially critical for rare cell populations or emergent antigens. This article describes how to set up, monitor, and maintain optimal voltage settings for your flow cytometry experiment.

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.