8 Time-Saving FACSDiva Software Tips

BD Biosciences brand of digital flow cytometers, including the FACSCanto, the LSR-II, FACSAria and Fortessa, utilize a software acquisition program known as FACSDiva.

Diva is aptly named as it can be a difficult program to master.

However, Diva has come along way over the past 10 years and many improvements have been made to help end-user.

Taking time to learn these changes will improve the reproducibility of your data, the chances of your data getting published, and your overall experience on the cytometer.

These changes will also save you time. Here are 8 time-saving FACSDiva tips to use the during your next flow experiment:

1. Compensation doesn’t require the ‘universal negative.’ 

It is important to remember that the background of the positive and negatives should be matched. The use of a universal negative will cause problems in compensation, especially if cells and beads are used for generating the compensation matrix.

In Diva, you can unselect the ‘use a separate tube for negative control’ when you’re setting up compensation. This will allocate the placement of a P3 gate on the single-stained histograms. Diva will then use the P3 gate as the negative population when calculating compensation.

2. Make multiple matrices.

In the case where several different antigens are being measured in the same channel, especially where the label is a tandem dye, it is critical to have a different compensation matrix for each tandem combination.

In Diva, when you create a compensation matrix, you can add additional columns of the channel in question, and label each one with the appropriate antigen name. Then, after collecting the controls and performing compensation, when you are finally collecting your samples, make sure each one is labeled with the same name. This will ensure that the proper compensation matrix is applied to each sample.

3. Collect more events.

When calculating compensation, don’t let the default of 5,000 events be your guide. When using compensation particles, 10,000-20,000 events is better. When using cells, 30,000-50,000 is better. A simple change in your DIVA layout can ensure that sufficient events are collected.

4. Create keywords.

Annotation of the data with keywords will help in finding data weeks and months after the experiments are run. Keywords are also useful when performing analysis in third party software for grouping and batch analysis. If you don’t know how to add keywords to your experiment, you are wasting valuable time that will affect your ability to reproduce and publish your data. Learn how to create keywords here.

5. Keep the Diva database clean.

Diva is based in Java, and the database size can have a negative impact on the speed of the software. It’s best to keep the data base seize well under 15 gigabytes. This means you need to export your experiments on a regular basis. It also means you need to back up your database before making major changes to your computer or the software program itself.

6. Limit the size of your data files.

With the ability to measure a million events in a few minutes, and with the occasional need to look at rare events, it is important to remember the size of file should be kept to a minimum.

The best practice is to collect three or four 1-2 million event files versus, for example, one 10 million event file. The data can later be joined (concatenated) in third party software platforms. But, during acquisition, to keep processing times reasonable, don’t let the file size get to big.

7. Read the Cytometer Setup & Tracking (CS&T) baseline report.

This report, which Diva provides, is full of useful information. The report includes suggestions for starting voltages, PMT dynamic ranges, and more.

When setting up a new experiment review these settings, especially the linear dynamic range of the PMTs. If your signals are outside of this range, then any compensation you apply to your cells will not be correct.

8. Use application specific settings.

When performing longitudinal studies, it’s essential that you maintain the optimal voltage of the instrument. This will ensure that any differences discovered will be the result of the biology of your cells, not the settings of your instrument.

Application specific settings should be finalized when the experiment is started. These settings are linked to the daily CS&T reports and, if the settings are correct, the software will make the appropriate adjustments in response to any instrument changes.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

By: Tim Bushnell, PhD

In the flow cytometry community, SPADE (Spanning-tree Progression Analysis of Density-normalized Events) is a favored algorithm for dealing with highly multidimensional or otherwise complex datasets. Like tSNE, SPADE extracts information across events in your data unsupervised and presents the result in a unique visual format. Given the growing popularity of this kind of algorithm for dealing with complex datasets, we decided to test the SPADE algorithm in 5 software packages, including Cytobank, FCS Express, FlowJo, R, and the original, free software made available by the author of SPADE. Which was the fastest?

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

By: Tim Bushnell, PhD

FlowJo is a powerful tool for performing and analyzing flow cytometry experiments, if you know how to use it to the fullest. This includes understanding embedding and using keywords, the FlowJo compensation wizard, spillover spreading matrix, FlowJo and R, and creating tables in FlowJo. Extending your use of FJ using these hacks will help organize your data, improve analysis and make your exported data easier to understand and explain to others. Take a few moments and explore all you can do with FJ beyond just gating populations.

Statistical Challenges Of Rare Event Measurements In Flow Cytometry

Statistical Challenges Of Rare Event Measurements In Flow Cytometry

By: Tim Bushnell, PhD

It is necessary to sort through hundreds of thousands or millions of cells to find the few events of interest. With such low event numbers, we move away from the comfortable domain of the Gaussian distribution and move into the realm of Poisson statistics. There are 3 points to consider to build confidence in the data that the events being counted are truly events of interest and not random events that just happen to fall into the gates of interest.

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

By: Tim Bushnell, PhD

Preparing for rare event analysis requires an understanding of the power and limitation of the instrument to be used. From how fast to run the fluidics, to how the signal is processed to the number of gates that can be used in the sorting experiment, each factor impacts the outcome of the experiment.

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

By: Tim Bushnell, PhD

With the added emphasis on reproducibility, it is critical to look at every step where experiments can be improved. No single step makes an experiment more reproducible, rather it is a process, making changes at each stage that leads to reproducibility. Antibodies comprise a critical component that needs to be reviewed. As Bradbury et al. in a commentary in Nature pointed out, the global spending on antibodies is about $1.6 billion a year, and it is estimated about half of that money is spent on “bad” antibodies. This does not include the additional costs of wasted time and effort by…

How To Achieve Accurate Flow Cytometry Calcium Flux Measurements

How To Achieve Accurate Flow Cytometry Calcium Flux Measurements

By: Tim Bushnell, PhD

Dyes exist for the detection of everything from large nucleic acids to reactive oxygen species, and from lipid aggregates to small ions. Concentrations of physiologically important ions such as sodium, potassium, and calcium can be important indicators of health and disease. Calcium ions play an especially critical role in cellular signaling. As a signaling messenger, calcium is involved in everything from muscle contractions, to cell motility, to enzyme activity. Calcium experiments can be very informative, and with the advent of cheaper UV lasers, more and more researchers can use ratiometric measurements to evaluate the signaling processes in phenotypically defined populations.

How to Perform Doublet Discrimination In Flow Cytometry

How to Perform Doublet Discrimination In Flow Cytometry

By: Tim Bushnell, PhD

You are probably familiar with the term, “doublet discrimination” or “doublet exclusion”, and have likely included this flow cytometry measurement into at least some (if not all) of your gating strategies. Even though you may utilize this important gating strategy, you may not have had the chance to delve deeper to explore exactly what doublets are and why it’s critical to exclude them. This article aims to give you insight on the what, why, and how of doublet discrimination.

4 Considerations For Assessing Protein Phosphorylation Using Flow Cytometry

4 Considerations For Assessing Protein Phosphorylation Using Flow Cytometry

By: Tim Bushnell, PhD

For those working in the signaling field, having the ability to take a sample and phenotypically identify it, while knowing what is happening inside the cell to the target molecules of choice opens up a host of new opportunities. These assays are amenable to high throughput setup, meaning that biologically relevant outcomes in pre-clinical drug discovery can be measured directly. All told, with a little forethought, some careful planning and validation, and our helpful tips, phosphoflow assays are within your reach.

5 Essential Calculations For Accurate Flow Cytometry Results

5 Essential Calculations For Accurate Flow Cytometry Results

By: Tim Bushnell, PhD

Flow cytometry is a numbers game. There are percentages of a population, fluorescence intensity measurements, sample averages, data normalization, and more. Many of these common calculations are useful, but surrounded by misconceptions. This primer will help you decide which calculation to use, when to use it, and how to interpret the results.

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.