Use These 5 Techniques for Super Resolution

When you need better resolution than what can be achieved using a traditional microscope, it can be very intimidating to figure out which microscopes will work best for your experiment. Super-resolution imaging methods require software reconstruction after image acquisition. This is because multiple images are acquired, and they need to be combined. Additionally, the points of light need to be reassigned to their true location.

Today, we’re going to discuss 5 different super-resolution methods their pros and cons. Although Rayleigh Criterion is not broken, these techniques each feature creative ways to get around it.

1. Structured illumination microscopy (or SIM).

SIM uses lasers through diffraction grating

SIM uses polarized light sources, like lasers, filtered through diffraction grating. The orientation of the grating is changed several times, and the resulting multiple images are used to reconstruct an image with better resolution than any of the originals.

The points of lights, which would normally interfere with their neighbors, are excited and captured at different times. This allows 100-nanometer x-y resolution, and 300-nanometer z resolution. Due to the gentle nature of the technique and speed, SIM represents an ideal method for the imaging of live cells and small organisms. It is often used for long-term imaging of embryo development experiments using Drosophila or C. elegans.

SIM’s major disadvantage is that the resolution is only approximately twice that of confocal microscopy. However, it does produce good resolution, and rapidly images very large areas.

2. Stochastic optical reconstruction microscopy (STORM)

Nikon’s MicroscopyU describes STORM’s fundamental principle as follows:

“The activated state of a photoswitchable molecule must lead to the consecutive emission of sufficient photons to enable precise localization before it enters a dark state or becomes deactivated by photobleaching.”

This simply means that you will be imaging fluorophores that randomly light up, allowing for the reconstruction of a single image from a large number of images with sparse labeling. Since the sample is sparsely labeled, it is unlikely that two nearby molecules will admit light at the exact same time. In this way, the software can more accurately determine both the location of a molecule and reconstruct an image with a 10-to-55-nanometer resolution in the x-y and z.

The acquisition takes several minutes per image, and only some dyes are able to blink. Recent advances have made it possible to utilize STORM with live cell imaging, but it’s not ideal for highly dynamic processes or experiments that run for long durations.

3. Photo-activated localization microscopy (PALM).

Eric Betzig is credited with the development of PALM, and he won the Nobel Prize for his work. PALM is in the same family as STORM, as they both use blinking fluorophores as well as multiple images to create a single image. The difference between the two is that STORM uses dyes, while palm uses photo-activatable fluorescent proteins. The high-end density of light needed for many frames means that PALM is not ideal for dynamic processes. There is a great YouTube video of the Eiffel Tower at night.

4. Stimulated emission depletion (STED).

Stefan Hell won a Nobel prize for developing this technique. The distilled version of STED is that you illuminate a spot approximately 200 nanometers wide with a green light, just like that of a laser scanning confocal. The difference is that a donut-shaped red light is projected onto the same spot, turning off all the fluorophores except for a very small area in the center of the hole of the donut-shaped beam. Because the microscope knows exactly where a point of light came from, the researcher can achieve superior resolution.

STED allows you to illuminate a spot approximately 200 nanometers wide with a green light

Some experts with ideal samples can achieve a resolution of just a few nanometers, but it’s more realistic to expect a 30-nanometer resolution. Since this method is just an extension of the laser scanning confocal, it pairs well with live cell imaging. Generally, though, you will get slightly less resolution than you would with STORM or PALM.

5. 4Pi microscopy

4Pi microscopy is used for the increase of an image’s axial resolution. Normally, the axial resolution (or z resolution) is about 500 nanometers due to the structure of the point spread function.

4Pi microscopy is used for the increase of an image's axial resolution

With 4Pi microscopy, two objectives are utilized on either side of the sample, and only the illuminated part of the sample, which is in focus for both objectives, is kept. Thus, the resolution in the z-direction is about 100-150 nanometers. This technique is very useful for thicker samples like spheroids that can get severely distorted in the z-direction using conventional confocal microscopy. 4Pi doesn’t have the same super resolutions, but it’s definitely improved 3D imaging.

An instructive paper by Sage et al. goes over the different imaging and software performed on real data. Check it out to get the flavor of some of the different benefits of each technique.

To learn more about how to Use These 5 Techniques for Super Resolution, and to get access to all of our advanced microscopy materials including training videos, presentations, workbooks, and private group membership, get on the Expert Microscopy wait list.

Join Expert Cytometry's Mastery Class
Heather Brown-Harding
Heather Brown-Harding

Heather Brown-Harding, PhD, is currently the assistant director of Wake Forest Microscopy and graduate teaching faculty.She also maintains a small research group that works on imaging of host-pathogen interactions. Heather is passionate about making science accessible to everyone.High-quality research shouldn’t be exclusive to elite institutions or made incomprehensible by unnecessary jargon. She created the modules for Excite Microscopy with this mission.

In her free time, she enjoys playing with her cat & dog, trying out new craft ciders and painting.You can find her on twitter (@microscopyEd) a few times of day discussing new imaging techniques with peers.

Similar Articles

The 5 Essentials To Successful Spectral Unmixing

The 5 Essentials To Successful Spectral Unmixing

By: Heather Brown-Harding, PhD

In an ideal world, we would be able to use fluorophores that don’t have any overlap in emission spectra and autofluorescence wouldn’t obscure your signal. Unfortunately, we don’t live in such a world and often have to use two closely related dyes – or contend with fluorescent molecules that are innately part of our sample. Fluorescent molecules include chlorophyll, collagen, NADPH, and vitamin A.  One example that I recently encountered was developing a new probe for lipids. The reviewers requested a direct comparison of the new dye to Nile Red in the same sample. Both dyes would localize to the…

The 5 Fundamental Methods For Imaging Nucleic Acids

The 5 Fundamental Methods For Imaging Nucleic Acids

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Optical Tissue Clearing For Pristine Sample Preparation

Optical Tissue Clearing For Pristine Sample Preparation

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

5-Point Guide To Buying A New Microscope For Your Lab

5-Point Guide To Buying A New Microscope For Your Lab

By: Heather Brown-Harding, PhD

Have you ever noticed how painful it can be to purchase a new microscope? It would be hard to miss – this can be a frustrating process. A lot of scientists and students consider the new microscope hunt quite scary for a variety of reasons. It might be that you’re worried you won’t get the right microscope and that you’ll regret it, or you may find that dealing with salespeople, in general, makes you kind of uncomfortable. But remember, salespeople are just human beings like you and me, and if we can treat them as such, the whole process of…

7 Individual Artifacts In Fluorescence Microscopy And How To Minimize Them

7 Individual Artifacts In Fluorescence Microscopy And How To Minimize Them

By: Heather Brown-Harding, PhD

There are 7 different common “artifacts” that may be affecting the quality of your imaging. Before digging into the details, let’s begin by defining an artifact: Essentially, it is any error introduced through sample preparation, the equipment or post-processing methods. This is an important concept to grasp because the effects can cause false positives or negatives, and they can physically distort your data. This is, of course, at odds with your mission to obtain reliable quantitative data. So what can you do to stop these artifacts? The problems can range from dirty objectives to bigger issues like light path aberrations.

6 Microscopy Assays To Determine Cell Health and Improve Your Experimental Results

6 Microscopy Assays To Determine Cell Health and Improve Your Experimental Results

By: Heather Brown-Harding, PhD

When you're performing imaging, always make sure that any phenotype isn't just an artifact of unhealthy cells. If you're doing drug discovery, you want to ensure that the treatment isn't highly toxic to non-target cells. Therefore, it's important to understand the health of the cells.

5 Special Considerations for Live Cell Imaging

5 Special Considerations for Live Cell Imaging

By: Heather Brown-Harding, PhD

Live cell imaging is advantageous for research were you may be worried about artifacts of fixation or when you want to measure a phenomenon over time. Live cell imaging is more difficult to achieve than fixed samples because we need to keep the cells live AND happy along with obtaining the images we need. We can reduce artifacts by keeping the cells in a favorable environment and minimizing external stressors. Here are 5 points to keep in mind when setting up your live cell imaging experiment.

5 Essential Controls For Reproducible Fluorescent Microscopy Imaging

5 Essential Controls For Reproducible Fluorescent Microscopy Imaging

By: Heather Brown-Harding, PhD

Controls are an integral part of all science. And the complexity of fluorescent microscopy makes including the right controls in your experiments paramount. You should be including these 5 controls in your experiments: an unlabeled sample, a non-specific binding control, a positive and negative control, an antibody titration curve, and blinded image capture. With those controls, you can be sure that your experiments are what you think they are and perform your imaging with confidence. So, happy imaging!

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.