The 5 Essentials To Successful Spectral Unmixing

In an ideal world, we would be able to use fluorophores that don’t have any overlap in emission spectra and autofluorescence wouldn’t obscure your signal. Unfortunately, we don’t live in such a world and often have to use two closely related dyes – or contend with fluorescent molecules that are innately part of our sample. Fluorescent molecules include chlorophyll, collagen, NADPH, and vitamin A

One example that I recently encountered was developing a new probe for lipids. The reviewers requested a direct comparison of the new dye to Nile Red in the same sample. Both dyes would localize to the same structure and had a similar excitation-emission spectrum. The only way to distinguish the two dyes was from the curve of the emission spectrum. Luckily, a technique called “Spectral Imaging and Linear Unmixing” or simply “Spectral Unmixing” can be used to separate even closely related fluorescent emissions. Here are the five steps to perform a spectral unmixing experiment that you can trust.

#1- Set Up Lambda Steps

There are several ways to accomplish spectral imaging, but all involve separating out the different wavelengths of light that are emitted by a fluorophore. This is usually achieved by either a diffraction grating or prism in scanning confocal microscopes. This light is then either sequentially measured with a signal photomultiplier tube (PMT) or simultaneously with a multianode PMT.  

The hardware of your system will dictate, at least partially, the set up of your lambda step. The diffraction grating or prism will dictate the possible “step size” that you can use. The step size is the window of wavelengths that you acquire. For example, the Zeiss confocal at Wake Forest has a 32 detector array to capture the light and a diffraction grating that allows for x, y, z windows of detection. More channels require more laser power and longer acquisitions. If two fluorophores are not too closely related, having larger step sizes and fewer channels speeds up acquisition and protects against excessive photodamage. If you are trying to separate out closely related fluorophores, then many small “windows” may be necessary.

#2- Obtain Reference Spectra

Before beginning with your experiment it’s always good to start with controls, and spectral unmixing experiments are no different. Spectral experiments require at least two samples with only the dye or autofluorescence present. For example, if you want to image a plant leaf with a green fluorescent protein (GFP), you would need a wild type sample to collect your chlorophyll spectra and then collect the GFP spectra in an area of the plant that does not have chlorophyll (i.e. roots). This step is called your lambda stack.

Once you have your reference spectra it is a good idea to examine the curves carefully before proceeding to your experiment. Ask yourself “does this spectrum look like what is expected?”  Preparation is key to good results.  

Another aspect to note is the intensity of the fluorophores to unmix. The technique requires that the intensity between the different fluorophores be similar. If your autofluorescence is ten times brighter than your signal, the unmixing will not. It is best to stop and pick a new strategy. 

#3-  Perform Experiment

Now you are ready to perform your experiment. You will take the images using the same settings that you used to acquire the reference spectra. And there are two things to keep in mind: acquisition will likely be slower than usual and the files will be big.

The acquisition is often slower not only because there may be moving parts, but also there is a lot of data that is coming from the acquisition, and streaming the data to the acquisition computer may be slowed down. These files will often be quite large because each pixel will have the data for the intensity of many emission windows. Files could easily be over 10-times larger than a traditional confocal image.

#4- Unmix using Reference Spectra

Unmixing your acquired image should be straight forward if you have good reference spectra and have set up your experiment appropriately. You simply load your reference spectra and the software will take care of the rest. The software is going pixel by pixel, determining what are the present components is the summed spectra. 

(Unmixing results demonstrating the separation of collagen. Shown here are (a) the desired collagen component, (b) the background component due to a mixture of eosin and tissue autofluorescence, and (c) the nuclei component due to Hoechst. The intensity of each component has been independently scaled to have its maximum intensity appear as white- Harmony et al., 2017)

Many commercial systems will have the unmixing processing step built into their proprietary software. There are open-source options if commercial software is not available, but commercial software is often optimized for their hardware. Some options include: 

Unmixing GUI (Matlab) 

Linear Unmixing JRU (FIJI)
LUMoS (FIJI)

#5- Carefully Inspect your Results

Your unmixed image should have similar localization as your single-channel images. If they look vastly different then it is a good idea to go back and make sure you have good spectra and controls. The software will do the calculus for you, but will only perform as well as the input.  

Another aspect to inspect is “residuals.” This channel output will graphically show you which pixels the software couldn’t reliably assign to a channel. A lot of residual signals will indicate that you have less reliable results. In science, we need to be confident in our results to ensure reproducibility. 

Spectral Imaging and Linear Unmixing are powerful tools to allow the imaging of multiple fluorophores that have overlapping spectrums, as well as to remove autofluorescence in tissues. What experiments can you do that you didn’t think were possible?

To learn more about microscopy, and to get access to all of our advanced materials including training videos, presentations, workbooks, and private group membership, get on the Expert Microscopy wait list.

Join Expert Cytometry's Mastery Class
Heather Brown-Harding
Heather Brown-Harding

Heather Brown-Harding, PhD, is currently the assistant director of Wake Forest Microscopy and graduate teaching faculty.She also maintains a small research group that works on imaging of host-pathogen interactions. Heather is passionate about making science accessible to everyone.High-quality research shouldn’t be exclusive to elite institutions or made incomprehensible by unnecessary jargon. She created the modules for Excite Microscopy with this mission.

In her free time, she enjoys playing with her cat & dog, trying out new craft ciders and painting.You can find her on twitter (@microscopyEd) a few times of day discussing new imaging techniques with peers.

Similar Articles

The 5 Fundamental Methods For Imaging Nucleic Acids

The 5 Fundamental Methods For Imaging Nucleic Acids

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Optical Tissue Clearing For Pristine Sample Preparation

Optical Tissue Clearing For Pristine Sample Preparation

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

5-Point Guide To Buying A New Microscope For Your Lab

5-Point Guide To Buying A New Microscope For Your Lab

By: Heather Brown-Harding, PhD

Have you ever noticed how painful it can be to purchase a new microscope? It would be hard to miss – this can be a frustrating process. A lot of scientists and students consider the new microscope hunt quite scary for a variety of reasons. It might be that you’re worried you won’t get the right microscope and that you’ll regret it, or you may find that dealing with salespeople, in general, makes you kind of uncomfortable. But remember, salespeople are just human beings like you and me, and if we can treat them as such, the whole process of…

7 Individual Artifacts In Fluorescence Microscopy And How To Minimize Them

7 Individual Artifacts In Fluorescence Microscopy And How To Minimize Them

By: Heather Brown-Harding, PhD

There are 7 different common “artifacts” that may be affecting the quality of your imaging. Before digging into the details, let’s begin by defining an artifact: Essentially, it is any error introduced through sample preparation, the equipment or post-processing methods. This is an important concept to grasp because the effects can cause false positives or negatives, and they can physically distort your data. This is, of course, at odds with your mission to obtain reliable quantitative data. So what can you do to stop these artifacts? The problems can range from dirty objectives to bigger issues like light path aberrations.

Use These 5 Techniques for Super Resolution

Use These 5 Techniques for Super Resolution

By: Heather Brown-Harding, PhD

When you need better resolution than what can be achieved using a traditional microscope, it can be very intimidating to figure out which machines will work best for your experiment. Super-resolution imaging methods require software reconstruction after image acquisition. This is because multiple images are required, and they need to be combined. Additionally, the points of light need to be reassigned to their true location. Today, we're going to discuss 5 different super resolution methods their pros and cons. Although Rayleigh Criterion is not broken, these techniques each feature creative ways to get around it.

6 Microscopy Assays To Determine Cell Health and Improve Your Experimental Results

6 Microscopy Assays To Determine Cell Health and Improve Your Experimental Results

By: Heather Brown-Harding, PhD

When you're performing imaging, always make sure that any phenotype isn't just an artifact of unhealthy cells. If you're doing drug discovery, you want to ensure that the treatment isn't highly toxic to non-target cells. Therefore, it's important to understand the health of the cells.

5 Special Considerations for Live Cell Imaging

5 Special Considerations for Live Cell Imaging

By: Heather Brown-Harding, PhD

Live cell imaging is advantageous for research were you may be worried about artifacts of fixation or when you want to measure a phenomenon over time. Live cell imaging is more difficult to achieve than fixed samples because we need to keep the cells live AND happy along with obtaining the images we need. We can reduce artifacts by keeping the cells in a favorable environment and minimizing external stressors. Here are 5 points to keep in mind when setting up your live cell imaging experiment.

5 Essential Controls For Reproducible Fluorescent Microscopy Imaging

5 Essential Controls For Reproducible Fluorescent Microscopy Imaging

By: Heather Brown-Harding, PhD

Controls are an integral part of all science. And the complexity of fluorescent microscopy makes including the right controls in your experiments paramount. You should be including these 5 controls in your experiments: an unlabeled sample, a non-specific binding control, a positive and negative control, an antibody titration curve, and blinded image capture. With those controls, you can be sure that your experiments are what you think they are and perform your imaging with confidence. So, happy imaging!

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.