The 5 Fundamental Methods For Imaging Nucleic Acids

A lot of microscopy assays are focused on labeling and imaging proteins. We often use antibodies against specific protein antigens or fuse a fluorescent protein to a protein of interest.  These methods cover many applications, but maybe you are interested in viral RNA, gene duplication, or need a counterstain to label the nucleus. You can’t fuse a protein to nucleic acids, so where should you start?

Try these 5 assays to image nucleic acids:

Nucleic Acid Dyes 

Nucleic acid dyes are small molecules that increase fluorescence when bound to nucleic acids.  They can bind DNA, RNA, or both, but do not differentiate specific sequences.  

1. DNA specific dyes

The two most well-known DNA specific dyes are Hoechst and DAPI. Both dyes bind the A-T rich regions in double-stranded DNA and are excited in the UV wavelengths. Most researchers use these dyes to label the nuclei of cells, but they can also be used for metaphase spread to karyotype chromosomal abnormalities.

Fig. 1 Metaphase spread of Panax ginseng 2n=48 chromosomes (a and c) and the karyotype idiogram showing 24 homologous pairs (enlarged; b and d) arranged in decreasing lengths.

More recently, new DNA probes have been developed for use in the far red channel. DRAQ5 is a cell-permeable dye that binds dsDNA. The excitation for DRAQ 5 is 647nm, and its emission is 681nm. This red-shifted dye is an excellent choice for live-cell imaging applications because the UV radiation damages cells. Other DNA specific dyes released in the last few years are SiR-DNA and SPY-DNA from Spirochrome. The wide variety of dyes now allows imaging on many different specialty microscope techniques such as SIM and STED.

2. RNA specific dyes

There are less RNA specific dyes than DNA dyes, but one good option is SYTO RNAselect, which can be imaged in the GFP spectra when the dye is bound to RNA. SYTO RNAselect is currently the only commercially available RNA dye that can be used in live cells. Still, several publications on newly designed RNA dyes have emerged in the past few years and will likely become commercially available in the near future. RNAselect dye has been used to study RNA granules, ribosomal RNA (rRNA), exosomes carrying RNA, and viral replication cycle. These dyes have many applications that you have not even thought of before!  

Fig. 2 Methanol-fixed MRC-5 cells stained with SYTO® RNASelect™ green-fluorescent cell stain.

3. General nucleic acid dyes

General nucleic acid dyes bind both RNA and DNA. These dyes may not be as specific but often make up for the lack of specificity with other desirable characteristics. One such dye is acridine orange, which can differentiate RNA and DNA based on the emission spectrum. When bound to dsDNA, acridine orange has a green emission (525nm), but when bound to RNA the dye has a red emission (650nm). This property makes the dye useful for comparing RNA and DNA content within a cell or during cell cycle progression.

The final general nucleic acid dye to know about is Propidium Iodide (PI). PI is most commonly used in flow cytometry for live/dead staining. This is because this dye can only permeate dying cells that have lost membrane integrity. In microscopy, PI it is used for cell health assays. One of the most common assays is using PI to determine the apoptosis of cells due to treatment.

Fig 3. Confocal laser scanning microscopy (CSLM) images of 24 h E. coli biofilm co-stained with propidium iodide (PI) and SYTO 9: vertical and horizontal cross-sections in multichannel

4. DNA Synthesis Labeling

We can use synthetic nucleotides to label cells that are proliferating and replicating their DNA. The two most common precursors for this technique are BrdU ( 5-bromo-2′-deoxyuridine) and EdU (5-ethynyl-2′-deoxyuridine). BrdU and Edu are non-radioactive methods of measuring DNA synthesis and have replaced the use of radioactive [3H]thymidine in many experiments. BrdU and EdU have some key differences to consider.

BrdU incorporation is followed by BrdU-specific antibody treatment during fluorescence microscopy. This means that the cell or tissue must be fixed before analysis, and it is not compatible with live-cell studies due to the size of the antibodies. BrdU has been combined with cell-specific markers to perform lineage analysis and cell fate studies. The one major limitation when using BrdU in experiments with tissue sections is that antibodies won’t penetrate well and will likely result in an undercount of actively cycling cells.

EdU is structurally similar to BrdU, but it has a terminal alkyne group. This alkyne group provides fluorescent labeling through “click” chemistry, which allows a fluorescent dye-conjugated azide to bind the target alkyne group through a covalent bond. EdU combined with “click” chemistry, which labels with a small molecule instead of an antibody, has vastly better penetration into tissue sections than BrdU.

Both BrdU and EdU have one major drawback for cell cycle or proliferation studies. Only cells that progress through S-phase and synthesize DNA during the treatment can incorporate the compounds. Compared to cells labeled with Ki67 (cell proliferation marker), BrdU and EdU undercount the number of actively proliferating cells. It is worthwhile to perform a comparison with your samples to ensure that your counts will be accurate.

Fig. 4 HeLa cells were fixed in 4% paraformaldehyde at RT for 15 min. Green: BrdU stained by BrdU antibody (ab152095) diluted at 1/2000. Blue: Hoechst 33342 staining.

5. In-situ hybridization

In-situ hybridization (ISH) is a method to label specific sequences of DNA or RNA and can be divided into chromogenic (CISH) and fluorescent (FISH) techniques. CISH and FISH only differ in how the probe is labeled and detected. CISH probes are generally labeled with horseradish peroxidase (HRP) or alkaline phosphatase (AP), while FISH probes are labeled with fluorochromes.  

The methods for all versions of in-situ hybridizations are essentially the same. First, the sample is fixed and the DNA or RNA is denatured. Proper denaturing of the nucleic acid is critical because the complementary strand needs access to the target sequence. Next, the probe needs to bind the target sequence (hybridize) overnight. Finally, the sample needs to be blocked, and the probe detected.  

There has been a considerable variety of methods using in situ hybridization in the last decade. Some versions that warrant further reading are:

  1. Single-molecule FISH (smFISH) 
  2. NEAT RNA-FISH for lncRNA
  3. Multiplex-FISH (M-FISH/Chromosome Painting)
  4. COMET-FISH for DNA damage
  5. CARD-FISH for identifying microbes that can’t be cultured in the lab

Fig. 5 Schematic from “Combined In Situ Hybridization and Immunohistochemistry in Rat Brain Tissue Using Digoxigenin-Labeled Riboprobes.”

Although there is no current method to directly fuse RNA onto a protein or antibody to nucleic acid sequences, the scientific community has come up with innovative ways to image nucleic acids. Often we focus only on proteins within the cell. Still, it is becoming more evident that the localization of DNA or RNA within cells is a powerful tool for studying cell biology.

To learn more about important techniques for your flow cytometry lab, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Heather Brown-Harding
Heather Brown-Harding

Heather Brown-Harding, PhD, is currently the assistant director of Wake Forest Microscopy and graduate teaching faculty.She also maintains a small research group that works on imaging of host-pathogen interactions. Heather is passionate about making science accessible to everyone.High-quality research shouldn’t be exclusive to elite institutions or made incomprehensible by unnecessary jargon. She created the modules for Excite Microscopy with this mission.

In her free time, she enjoys playing with her cat & dog, trying out new craft ciders and painting.You can find her on twitter (@microscopyEd) a few times of day discussing new imaging techniques with peers.

Similar Articles

How To Do Variant Calling From RNASeq NGS Data

How To Do Variant Calling From RNASeq NGS Data

By: Deepak Kumar, PhD

Developing variant calling and analysis pipelines for NGS sequenced data have become a norm in clinical labs. These pipelines include a strategic integration of several tools and techniques to identify molecular and structural variants. That eventually helps in the apt variant annotation and interpretation. This blog will delve into the concepts and intricacies of developing a “variant calling” pipeline using GATK. “Variant calling” can also be performed using tools other than GATK, such as FREEBAYES and SAMTOOLS.  In this blog, I will walk you through variant calling methods on Illumina germline RNASeq data. In the steps, wherever required, I will…

How small can you go? Flow cytometry of bacteria and viruses

How small can you go? Flow cytometry of bacteria and viruses

By: Tim Bushnell, PhD

Flow cytometers are traditionally designed for measuring particles, like beads and cells. These tend to fall in the small micron size range. Looking at the relative size of different targets of biological interest, it is clear the most common targets for flow cytometry (cells) are comparatively large (figure 1). Figure 1:  Relative size of different biological targets of interest. Image modified from Bioninja.    In the visible spectrum, where most of the excitation light sources reside, it is clear the cells are larger than the light. This is important as one of the characteristics that we typically measure is the amount…

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

By: Tim Bushnell, PhD

As the labeled cell passes through the interrogation point, it is illuminated by the excitation lasers. The fluorochromes, fluoresce; emitting photons of a higher wavelength than the excitation source. This is typically modeled using spectral viewers such as in the figure below, which shows the excitation (dashed lines) and emission (filled curves) for Brilliant Violet 421TM (purple) and Alexa Fluor 488Ⓡ (green).  Figure 1: Excitation and emission profiles of BV421TM and AF488Ⓡ  In traditional fluorescent flow cytometry (TFF), the instrument measures each fluorochrome off an individual detector. Since the detectors we use — photomultiplier tubes (PMT) and avalanche photodiodes (APD)…

How To Extract Cells From Tissues Using Laser Capture Microscopy

How To Extract Cells From Tissues Using Laser Capture Microscopy

By: Tim Bushnell, PhD

Extracting specific cells still remains an important aspect of several emerging genomic techniques. Prior knowledge about the input cells helps to put the downstream results in context. The most common isolation technique is cell sorting, but it requires a single cell suspension and eliminates any spatial information about the microenvironment. Spatial transcriptomics is an emerging technique that can address some of these issues, but that is a topic for another blog.  So what does a researcher who needs to isolate a specific type of cell do? The answer lies in the technique of laser capture microdissection (LCM). Developed at the National…

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

By: Tim Bushnell, PhD

Incorporating quality control as a part of the optimization process in  your flow cytometry protocol is important. Take a step back and consider how to build quality control tracking into the experimental protocol.  When researchers hear about quality control, they immediately shift their attention to those operating and maintaining the instrument, as if the whole weight of QC should fall on their shoulders.   It is true that core facilities work hard to provide high-quality instruments and monitor performance over time so that the researchers can enjoy uniformity in their experiments. That, however, is just one level of QC.  As the experimental…

Understanding Clinical Trials And Drug Development As A Research Scientist

Understanding Clinical Trials And Drug Development As A Research Scientist

By: Deepak Kumar, PhD

Clinical trials are studies designed to test the novel methods of diagnosing and treating health conditions – by observing the outcomes of human subjects under experimental conditions.  These are interventional studies that are performed under stringent clinical laboratory settings. Contrariwise, non-interventional studies are performed outside the clinical trial settings that provide researchers an opportunity to monitor the effect of drugs in real-life situations. Non-interventional trials are also termed observational studies as they include post-marketing surveillance studies (PMS) and post-authorization safety studies (PASS). Clinical trials are preferred for testing newly developed drugs since interventional studies are conducted in a highly monitored…

Which Fluorophores To Use For Your Microscopy Experiment

Which Fluorophores To Use For Your Microscopy Experiment

By: Heather Brown-Harding, PhD

Fluorophore selection is important. I have often been asked by my facility users which fluorophore is best suited for their experiments. The answer to this is mostly dependent on whether they are using a widefield microscope with set excitation/emission cubes or a laser based system that lets you select the laser and the emission window. Once you have narrowed down which fluorophores you can excite and collect the correct emission, you can further refine the specific fluorophore that is best for your experiment.  In this blog  we will discuss how to determine what can work with your microscope, and how…

How To Optimize Instrument Voltage For Flow Cytometry Experiments  (Part 3 Of 6)

How To Optimize Instrument Voltage For Flow Cytometry Experiments (Part 3 Of 6)

By: Tim Bushnell, PhD

As we continue to explore the steps involved in optimizing a flow cytometry experiment, we turn our attention to the detectors and optimizing sensitivity: instrument voltage optimization.  This is important as we want to ensure that we can make as sensitive a measurement as possible.  This requires us to know the optimal sensitivity of our instrument, and how our stained cells are resolved based on that voltage.  Let’s start by asking the question what makes a good voltage?  Joe Trotter, from the BD Biosciences Advanced Technology Group, once suggested the following:  Electronic noise effects resolution sensitivity   A good minimal PMT…

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

By: Deepak Kumar, PhD

In the first blog of this series, we explored the power of sequencing the genome at various levels. We also dealt with how the characterization of the RNA expression levels helps us to understand the changes at the genome level. These changes impact the downstream expression of the target genes. In this blog, we will explore how NGS sequencing can help us comprehend DNA modification that affect the expression pattern of the given genes (epigenetic profiling) as well as characterizing the DNA-protein interactions that allow for the identification of genes that may be regulated by a given protein.  DNA Methylation Profiling…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.