The 5 Fundamental Methods For Imaging Nucleic Acids

A lot of microscopy assays are focused on labeling and imaging proteins. We often use antibodies against specific protein antigens or fuse a fluorescent protein to a protein of interest.  These methods cover many applications, but maybe you are interested in viral RNA, gene duplication, or need a counterstain to label the nucleus. You can’t fuse a protein to nucleic acids, so where should you start?

Try these 5 assays to image nucleic acids:

Nucleic Acid Dyes 

Nucleic acid dyes are small molecules that increase fluorescence when bound to nucleic acids.  They can bind DNA, RNA, or both, but do not differentiate specific sequences.  

1. DNA specific dyes

The two most well-known DNA specific dyes are Hoechst and DAPI. Both dyes bind the A-T rich regions in double-stranded DNA and are excited in the UV wavelengths. Most researchers use these dyes to label the nuclei of cells, but they can also be used for metaphase spread to karyotype chromosomal abnormalities.

Fig. 1 Metaphase spread of Panax ginseng 2n=48 chromosomes (a and c) and the karyotype idiogram showing 24 homologous pairs (enlarged; b and d) arranged in decreasing lengths.

More recently, new DNA probes have been developed for use in the far red channel. DRAQ5 is a cell-permeable dye that binds dsDNA. The excitation for DRAQ 5 is 647nm, and its emission is 681nm. This red-shifted dye is an excellent choice for live-cell imaging applications because the UV radiation damages cells. Other DNA specific dyes released in the last few years are SiR-DNA and SPY-DNA from Spirochrome. The wide variety of dyes now allows imaging on many different specialty microscope techniques such as SIM and STED.

2. RNA specific dyes

There are less RNA specific dyes than DNA dyes, but one good option is SYTO RNAselect, which can be imaged in the GFP spectra when the dye is bound to RNA. SYTO RNAselect is currently the only commercially available RNA dye that can be used in live cells. Still, several publications on newly designed RNA dyes have emerged in the past few years and will likely become commercially available in the near future. RNAselect dye has been used to study RNA granules, ribosomal RNA (rRNA), exosomes carrying RNA, and viral replication cycle. These dyes have many applications that you have not even thought of before!  

Fig. 2 Methanol-fixed MRC-5 cells stained with SYTO® RNASelect™ green-fluorescent cell stain.

3. General nucleic acid dyes

General nucleic acid dyes bind both RNA and DNA. These dyes may not be as specific but often make up for the lack of specificity with other desirable characteristics. One such dye is acridine orange, which can differentiate RNA and DNA based on the emission spectrum. When bound to dsDNA, acridine orange has a green emission (525nm), but when bound to RNA the dye has a red emission (650nm). This property makes the dye useful for comparing RNA and DNA content within a cell or during cell cycle progression.

The final general nucleic acid dye to know about is Propidium Iodide (PI). PI is most commonly used in flow cytometry for live/dead staining. This is because this dye can only permeate dying cells that have lost membrane integrity. In microscopy, PI it is used for cell health assays. One of the most common assays is using PI to determine the apoptosis of cells due to treatment.

Fig 3. Confocal laser scanning microscopy (CSLM) images of 24 h E. coli biofilm co-stained with propidium iodide (PI) and SYTO 9: vertical and horizontal cross-sections in multichannel

4. DNA Synthesis Labeling

We can use synthetic nucleotides to label cells that are proliferating and replicating their DNA. The two most common precursors for this technique are BrdU ( 5-bromo-2′-deoxyuridine) and EdU (5-ethynyl-2′-deoxyuridine). BrdU and Edu are non-radioactive methods of measuring DNA synthesis and have replaced the use of radioactive [3H]thymidine in many experiments. BrdU and EdU have some key differences to consider.

BrdU incorporation is followed by BrdU-specific antibody treatment during fluorescence microscopy. This means that the cell or tissue must be fixed before analysis, and it is not compatible with live-cell studies due to the size of the antibodies. BrdU has been combined with cell-specific markers to perform lineage analysis and cell fate studies. The one major limitation when using BrdU in experiments with tissue sections is that antibodies won’t penetrate well and will likely result in an undercount of actively cycling cells.

EdU is structurally similar to BrdU, but it has a terminal alkyne group. This alkyne group provides fluorescent labeling through “click” chemistry, which allows a fluorescent dye-conjugated azide to bind the target alkyne group through a covalent bond. EdU combined with “click” chemistry, which labels with a small molecule instead of an antibody, has vastly better penetration into tissue sections than BrdU.

Both BrdU and EdU have one major drawback for cell cycle or proliferation studies. Only cells that progress through S-phase and synthesize DNA during the treatment can incorporate the compounds. Compared to cells labeled with Ki67 (cell proliferation marker), BrdU and EdU undercount the number of actively proliferating cells. It is worthwhile to perform a comparison with your samples to ensure that your counts will be accurate.

Fig. 4 HeLa cells were fixed in 4% paraformaldehyde at RT for 15 min. Green: BrdU stained by BrdU antibody (ab152095) diluted at 1/2000. Blue: Hoechst 33342 staining.

5. In-situ hybridization

In-situ hybridization (ISH) is a method to label specific sequences of DNA or RNA and can be divided into chromogenic (CISH) and fluorescent (FISH) techniques. CISH and FISH only differ in how the probe is labeled and detected. CISH probes are generally labeled with horseradish peroxidase (HRP) or alkaline phosphatase (AP), while FISH probes are labeled with fluorochromes.  

The methods for all versions of in-situ hybridizations are essentially the same. First, the sample is fixed and the DNA or RNA is denatured. Proper denaturing of the nucleic acid is critical because the complementary strand needs access to the target sequence. Next, the probe needs to bind the target sequence (hybridize) overnight. Finally, the sample needs to be blocked, and the probe detected.  

There has been a considerable variety of methods using in situ hybridization in the last decade. Some versions that warrant further reading are:

  1. Single-molecule FISH (smFISH) 
  2. NEAT RNA-FISH for lncRNA
  3. Multiplex-FISH (M-FISH/Chromosome Painting)
  4. COMET-FISH for DNA damage
  5. CARD-FISH for identifying microbes that can’t be cultured in the lab

Fig. 5 Schematic from “Combined In Situ Hybridization and Immunohistochemistry in Rat Brain Tissue Using Digoxigenin-Labeled Riboprobes.”

Although there is no current method to directly fuse RNA onto a protein or antibody to nucleic acid sequences, the scientific community has come up with innovative ways to image nucleic acids. Often we focus only on proteins within the cell. Still, it is becoming more evident that the localization of DNA or RNA within cells is a powerful tool for studying cell biology.

To learn more about important techniques for your flow cytometry lab, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Heather Brown-Harding
Heather Brown-Harding

Heather Brown-Harding, PhD, is currently the assistant director of Wake Forest Microscopy and graduate teaching faculty.She also maintains a small research group that works on imaging of host-pathogen interactions. Heather is passionate about making science accessible to everyone.High-quality research shouldn’t be exclusive to elite institutions or made incomprehensible by unnecessary jargon. She created the modules for Excite Microscopy with this mission.

In her free time, she enjoys playing with her cat & dog, trying out new craft ciders and painting.You can find her on twitter (@microscopyEd) a few times of day discussing new imaging techniques with peers.

Similar Articles

How To Profile DNA And RNA Expression Using Next Generation Sequencing

How To Profile DNA And RNA Expression Using Next Generation Sequencing

By: Deepak Kumar, PhD

Why is Next Generation Sequencing so powerful to explore and answer both clinical and research questions. With the ability to sequence whole genomes, identifying novel changes between individuals, to exploring what RNA sequences are being expressed, or to examine DNA modifications and protein-DNA interactions occurring that can help researchers better understand the complex regulation of transcription. This, in turn, allows them to characterize changes during different disease states, which can suggest a way to treat said disease.  Over the next two blogs, I will highlight these different methods along with illustrating how these can help clinical diagnostics as well as…

Optimizing Flow Cytometry Experiments - Part 2         How To Block Samples (Sample Blocking)

Optimizing Flow Cytometry Experiments - Part 2 How To Block Samples (Sample Blocking)

By: Tim Bushnell, PhD

In my previous blog on  experimental optimization, we discussed the idea of identifying the best antibody concentration for staining the cells. We did this through a process called titration, which  focuses on finding the best signal-to-noise ratio at the lowest antibody concentration. In this blog we will deal with sample blocking As a reminder, there are two other major binding concerns with antibodies. The first is the specific binding of the Fc fragment of the antibody to the Fc Receptor expressed on some cells. This protein is critical for the process of destroying microbes or other cells that have been…

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

By: Heather Brown-Harding, PhD

TIRF is not as common as other microscopy based techniques due to certain restrictions. We will discuss these restrictions, then analyze why it might be perfect for your experiment.  TIRF relies on an evanescent wave, created through a critical angle of coherent light (i.e. laser) that reaches a refractive index mismatch.  What does it mean in practice?  A high angle laser reflects off the interface of the coverslip and the sample. Although the depth that this wave penetrates is dependent on the wavelength of the light, in practice it is approximately 50-300nm from the coverslip. Therefore, the cell membrane is…

What Is Next Generation Sequencing (NGS) And How Is It Used In Drug Development

What Is Next Generation Sequencing (NGS) And How Is It Used In Drug Development

By: Deepak Kumar, PhD

NGS methodologies have been used to produce high-throughput sequence data. These data with appropriate computational analyses facilitate variant identification and prove to be extremely valuable in pharmaceutical industries and clinical practice for developing drug molecules inhibiting disease progression. Thus, by providing a comprehensive profile of an individual’s variome — particularly that of clinical relevance consisting of pathogenic variants — NGS helps in determining new disease genes. The information thus obtained on genetic variations and the target disease genes can be used by the Pharma companies to develop drugs impeding these variants and their disease-causing effect. However simple this may allude…

How To Determine The Optimal Antibody Concentration For Your Flow Cytometry Experiment (Part 1 of 6)

How To Determine The Optimal Antibody Concentration For Your Flow Cytometry Experiment (Part 1 of 6)

By: Tim Bushnell, PhD

Over the next series of blog posts, we will explore the different aspects of optimizing a polychromatic flow cytometry panel. These steps range from figuring out the best voltage to use, which controls are critical for data interpretation, what quality control tools can be integrated into the assay; how to block cells, and more. This blog will focus on determining the optimal antibody concentration.  As a reminder about the antibody structure, a schematic of an antibody is shown below.  Figure 1: Schematic of an antibody. Figure from Wikipedia. The antibody is composed of two heavy chains and two light chains that…

5 Drool Worthy Imaging Advances Of 2020

5 Drool Worthy Imaging Advances Of 2020

By: Heather Brown-Harding, PhD

2020 was a difficult year for many, with their own research being interrupted- either by lab shutdowns or recruitment into the race against COVID-19. Despite the challenges, scientists have continued to be creative and have pushed the boundaries of what is possible. These are the techniques and technologies that every microscopist was envious of in 2020. Spatially Resolved Transcriptomics Nature Methods declared that spatially resolved transcriptomics was the 2020 method of the year. These are a  group of methods that combine gene expression with their physical location. Single-cell RNA sequencing (scRNAseq) was originally developed for cells that had been dissociated…

Picking The Right Functional Imaging Probe

Picking The Right Functional Imaging Probe

By: Heather Brown-Harding, PhD

As biologists, we study the process of life, however, it’s intricacies cannot be captured by a snapshot in time. Generally, the easiest imaging experiments are those where the samples are stained, fixed, and imaged within a few days of procurement, but that too doesn’t capture the dynamic processes common in cells and organisms. Live cell imaging when combined with reporters serves as a powerful tool to provide solid imaging data. Cameleon —one of the first reporters— was developed in 1997 in Roger Tsien’s lab.  Cameleon is a green fluorescent protein (GFP) that undergoes a conformational change in the presence of…

Brightness Is In The Eye Of The Detector - What To Consider When Designing Your Panel

Brightness Is In The Eye Of The Detector - What To Consider When Designing Your Panel

By: Tim Bushnell, PhD

The heart and soul of the flow cytometry experiment is the ‘panel.’ The unique combinations of antibodies, antigens, fluorochromes, and other reagents are central to identifying the cells of interest and extracting the data necessary to answer the question at hand. Designing the right panel for flow cytometry is essential for detecting different modalities. The more parameters that can be interrogated will yield more information about the target cells. Current instruments can measure as many as 40 different parameters simultaneously. This is exciting, as it allows for more complex questions to be studied. Panel design is also valuable for precious samples,…

7 Key Image Analysis Terms For New Microscopist

7 Key Image Analysis Terms For New Microscopist

By: Heather Brown-Harding, PhD

As scientists, we need to perform image analysis after we’ve acquired images in the microscope, otherwise, we have just a pretty picture and not data. The vocabulary for image processing and analysis can be a little intimidating to those new to the field. Therefore, in this blog, I’m going to break down 7 terms that are key when post-processing of images. 1. RGB Image Images acquired during microscopy can be grouped into two main categories. Either monochrome (that can be multichannel) or “RGB.” RGB stands for red, green, blue – the primary colors of light. The cameras in our phones…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.