How To Troubleshoot The Flow Cytometer Fluidics System

Flow cytometers have three major components:

  • Fluidics that move the cells from the sample tube to the intercept point
  • Optics that collect the light
  • Electronics that convert the photocurrent into a digital value that is stored for later analysis

If we look at the fluidics system of a standard flow cytometer, laminar flow is established by the sheath fluid. This is even flow with fluid flowing in ‘parallel layers’. Due to some friction on the side of the tubing, the flow ultimately develops a parabolic shape, as shown below.

Direction of flow in a cytometer

Into the center of this laminar flow, the cells are injected. The cell and fluid mixture is introduced at a higher differential pressure, keeping the cells in the center of the laminar flow, and allowing the process of hydrodynamic focusing to occur, which causes the cells to spread out along the velocity axis, single file, as they approach the intercept point.

Differential flow within the cytometer during testing

After the intercept, the cells either flow into the waste or, in the case of a cell sorter, the stream is broken into droplets, and the appropriate droplet is charged and sorted.

Most of the interactions that a user has with a flow cytometer is with the fluidics system, and many of the issues that users will face in troubleshooting problems on the instrument will also be here.

Here are four important questions to ask yourself when trying to understand and troubleshoot the fluidics system in your flow cytometer…

1. What sheath fluid are you using in your cytometry protocol?

Many institutes run a phosphate buffered saline (PBS) as their sheath fluid. This can be made in-house or purchased from any number of vendors. However, since the sheath fluid and sample stream do not mix, it’s not necessary to use PBS for the sheath fluid.

Others use just water for the sheath. Several years ago, we converted to using water with 0.1% 2-phenoxyethanol, which is used as a preservative and has some surfactant properties.

For cell sorters, however, one must use some buffered saline solution for the sheath fluid. Since 2004, I have used a 10 mM HEPES buffered saline solution for my sorting needs. This is because HEPES is a better buffer at sorting pressures than Phosphate.

If your cells are prepared and held in a culture media (like RPMI), adding HEPES to the solution is appropriate, as culture medias are typically formulated to buffer in a CO2 environment.

Our solution (10X) is as follows:

  • 13.015g HEPES sodium salt
  • 11.915g HEPES free acid
  • 80g NaCl
  • pH to 7.2-7.4, final volume to 1L

2. What is the differential pressure?

The core stream is where the action occurs. The cells, contained in the core stream, are spread out along the flow axis until the cells become single file as they pass by the laser intercept.

Since the sheath flow rate sets the speed of the system, the only way to increase the number of events seen by the flow cytometer is to increase the differential pressure between the sample and the sheath fluid.

The consequences of increasing the differential pressure include:

  • Increasing the number of coincident events
  • Increasing the spread of the data

In the data below, cells were run at three differential pressures, from low to high. As you can see, increasing the differential pressure increases the number of events (intensity increasing from left to right), but the spread of the data also increases.

Rate of flow through cytometer at different pressure levels

Best practice is to consider running a low differential pressure at a higher concentration.

3. Does the data show backpressure or a clog?

On multi-laser systems, knowing the order of the lasers is a good thing. One impact of things that affect the sheath flow rate (i.e. clogs and back-pressure) is that the time to travel between lasers is impacted. Thus, as the signals are matched by the delay electronics, the resulting data will be wonky.

As shown here, this was the result of a problem with the sheath flow on a 4-laser instrument, and the green laser was the 4th laser in order.

Poor flow through the cytometer

Notice how the signal on the ‘poor flow’ plot bounces around. This indicates a major issue with fluidics and if this is observed, it is time to stop and do a quick cleaning/check of the system.

Remember, filtering samples is always a good idea!

4. Is the cytometer fluid pathway clean?

Cleaning the flow cytometry fluidics pathway is a thankless task. Each vendor has their own recommendations as to how often to clean the system, and what reagents are best to use.

A long clean of the system should occur at least once a week (more if it is a heavily used system), and a shorter cleaning should occur daily before use. This is in addition to any cleaning that is done between users.

In long cleaning, one should bypass any in-line filters, so that the cleaning solutions do not compromise the filter status. This process takes about 1.5 hours and uses a detergent (Contrad), an alcohol (Ethanol), and sheath fluid.

  • 1% Contrad 70 for 15 minutes (in sheath tank and Sample Injection Port)
  • 70% Ethanol for 15 minutes (in sheath tank and Sample Injection Port)
  • Water for 30 minutes (in sheath tank and Sample Injection Port)
  • Sheath fluid for 10 minutes (in sheath tank and Sample Injection Port)
  • Run QC particles

One important thing to remember is that when bleach is used, it is critical to wash out the bleach before opening the machine for general use.

In this experiment, 10% bleach was run for 5 minutes on the SIP before removing the tube and placing a tube with water on the SIP.

The system was either run for 5 minutes (blue line) or not run at all (red line). Peak 6 beads were run and 10,000 single events recorded. The data shows that in the presence of residual bleach, the APC signal decreases by 50%, while the PE signal is relatively robust (only a 2.5% decrease).

Using fresh water to clean the cytometer pathway

A quick fix for this is to put a fresh tube of water on the SIP and start running the system while you set up the electronics — and this issue will be avoided.

As a side note, there are some other fluidics arrangements out there — such as the Attune, which uses an acoustic wave to focus the cells in the center of the core stream, and the Guava instruments, which use a microfluidics capillary system, meaning no separate sheath fluid.

These types of issues can also arise on these systems, so watch your data.

Understanding the fluidics system and observing the consequences of the system during acquisition is important to solve problems before they become major issues. While walk-away options exist on cytometers (such as high throughput sampling systems), care must be taken to make sure that the samples are properly prepared so that clogs and other preventable nuisances are avoided and data is not lost.

To learn more about how to troubleshoot the flow cytometer fluidics system and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

The Power Of Spectral Viewers And Their Use In Full Spectrum Flow Cytometry

The Power Of Spectral Viewers And Their Use In Full Spectrum Flow Cytometry

By: Tim Bushnell, PhD

What photon from yonder fluorochrome breaks?  It is … umm… hmmm. Let me see. Excitation off a 561 nm laser, with an emission maximum of 692 nm. I’m sure if Shakespeare was a flow cytometrist, he might have written that very scene. But the play is lost in time. However, since the protagonist had difficulty determining what fluorochrome was emitting photons, let’s consider how this could be figured out. In my opinion, one of the handiest flow cytometry tools is the spectral viewer. This tool helps visualize the excitation and emission profile of different fluorochromes, as well as allowing you…

3 Must-Have High-Dimensional Flow Cytometry Controls

3 Must-Have High-Dimensional Flow Cytometry Controls

By: Tim Bushnell, PhD

Developments such as the recent upgrade to the Cytobank analysis platform and the creation of new packages such as Immunocluster are reducing the computational expertise needed to work with high-dimensional flow cytometry datasets. Whether you are a researcher in academia, industry, or government, you may want to take advantage of the reduced barrier to entry to apply high-dimensional flow cytometry in your work. However, you’ll need the right experimental design to access the new transformative insights available through these approaches and avoid wasting the considerable time and money required for performing them. As with all experiments, a good design begins…

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

By: Tim Bushnell, PhD

Fluorochrome, antibodies and detectors are important. The journey of a thousand cells starts with a good fluorescent panel. The polychromatic panel is the combination of antibodies and fluorochromes. These will be used during the experiment to answer the biological question of interest. When you only need a few targets, the creation of the panel is relatively straightforward. It’s only when you start to get into more complex panels with multiple fluorochromes that overlap in excitation and emission gets more interesting.  FLUOROCHROMES Both full spectrum and traditional fluorescent flow cytometry rely on measuring the emission of the fluorochromes that are attached…

Flow Cytometry Year in Review: Key Changes To Know

Flow Cytometry Year in Review: Key Changes To Know

By: Meerambika Mishra

Here we are, at the end of an eventful year 2021. But with the promise of a new year 2022 to come. It has been a long year, filled with ups and downs. It is always good to reflect on the past year as we move to the future.  In Memoriam Sir Isaac Newton wrote “If I have seen further, it is by standing upon the shoulders of giants.” In the past year, we have lost some giants of our field including Zbigniew Darzynkiwicz, who contributed much in the areas of cell cycle analysis and apoptosis. Howard Shapiro, known for…

What Star Trek Taught Me About Flow Cytometry

What Star Trek Taught Me About Flow Cytometry

By: Tim Bushnell, PhD

It is no secret that I am a very big fan of the Star Trek franchise. There are many good episodes and lessons explored in the 813+ episodes, 12 movies (and counting). Don’t worry, this blog is not going to review all 813, or even 5 of them. Instead, some of the lessons I have taken away from the show that have applicability to science and flow cytometry.  “Darmok and Jalad at Tanagra.”  (ST:TNG season 5, episode 2) This is probably one of my favorite episodes, which involves Picard and an alien trying to establish a common ground and learn…

5 Flow Cytometry Strategies That Sun Tzu Taught Me

5 Flow Cytometry Strategies That Sun Tzu Taught Me

By: Tim Bushnell, PhD

Sun Tzu was a Chinese general and philosopher. His most famous writing is ‘The Art of War’, and has been studied by generals and CEOs, to glean ideas and strategies to help their missions. I was recently rereading this work and thought to myself if any of Sun Tzu’s lessons could apply to flow cytometry.  So I have identified 5 points that I think lend themselves to thinking about flow cytometry.  “Quickness is the essence of the war.” In flow cytometry, speed is of the essence. The longer the cells are out of their natural environment, the less happy they…

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

By: Meerambika Mishra

Mastering foundational concepts are imperative for successfully using any technique or system.  Robert Heinlein introduced the term ‘Grok’  in his novel Stranger in a Strange Land. Ever since then it has made its way into popular culture. To Grok something is to understand it intuitively, fully. As a cytometrist, there are several key concepts that you must grok to be successful in your career. These foundational concepts are the key tools that we use day in and day out to identify and characterize our cells of interest.  Cells Flow cytometry measures biological processes at the whole cell level. To do…

Which Fluorophores To Use For Your Microscopy Experiment

Which Fluorophores To Use For Your Microscopy Experiment

By: Heather Brown-Harding, PhD

Fluorophore selection is important. I have often been asked by my facility users which fluorophore is best suited for their experiments. The answer to this is mostly dependent on whether they are using a widefield microscope with set excitation/emission cubes or a laser based system that lets you select the laser and the emission window. Once you have narrowed down which fluorophores you can excite and collect the correct emission, you can further refine the specific fluorophore that is best for your experiment.  In this blog  we will discuss how to determine what can work with your microscope, and how…

4 No Cost Ways To Improve Your Microscopy Image Quality

4 No Cost Ways To Improve Your Microscopy Image Quality

By: Heather Brown-Harding, PhD

Image quality is critical for accurate and reproducible data. Many people get stuck on the magnification of the objective or on using a confocal instead of a widefield microscope. There are several other factors that affect the image quality such as the numerical aperture of the objective, the signal-to-noise ratio of the system, or the brightness of the sample.  Numerical aperture is the ability of an objective to collect light from a sample, but it contributes to two key formulas that will affect your image quality. The first is the theoretical resolution of the objective. It is expressed with the…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.