6 Keys To Running A Proper Clinical Flow Cytometry Experiment

Clinical use of flow cytometry has paralleled the development of instrumentation and reagents.

One early application for flow cytometry is the measurement of DNA content. 

Malignancies and neoplasms often have abnormal amounts of DNA, and this can be assessed with a variety of protocols and dyes.

Comparing DNA Index (DI) of a known 2N control to a sample can yield useful information, but the clinical application of this information was limited, as it was not known how it turned these data into meaningful biological and clinical data insights.

The Rise Of Clinical Flow Cytometry

With the increased development of fluorescently conjugated monoclonal antibodies came more applications with potential clinical impact. For example, in bone marrow transplantation, studies using hematopoietic cytokines made it feasible to gather stem cells from peripheral blood.

It was also shown that reconstitution of bone marrow was accelerated when using cells from peripheral blood rather than bone marrow.

To arrive at a dose for each patient, physicians were using a total nucleated cell count per kilogram. 

But since the number of stem cells in peripheral blood is highly variable from donor to donor, and the first efforts at enumeration by culture took 10-14 days.

In the late 80’s it was shown that the majority of the colony forming and engrafting cells were contained in a small population of cells expressing the marker CD34. Now we have an assay and gating strategy that can generate accurate CD34+ counts in about an hour, greatly increasing the accuracy and ease of planning of apheresis schedules.

Multi-Parameter Instrumentation And Immunophenotyping

The area that has made the most use of today’s multi-parameter instrumentation and variety of fluorescent reagents is the immunophenotyping of hematopathologies, especially leukemias and lymphomas. 

Twenty years ago, acute lymphoblastic leukemias were typed simply as B, T, or null.

Now, B and T cell leukemias are further characterized to indicate maturation state, and these patterns of surface markers can also show correlation to specific genetic abnormalities.

In the world of hematologic malignancy, flow cytometry has made quite an impact over the decades. Under the pathologists microscope B cell Acute Lymphoblastic Leukemia (B-ALL) without maturation can look very much like B-ALL with maturation.

But in flow cytometers, we can much more quickly show that this is B cell disease rather than T cell or Myeloid malignancy.

Even better, we can define maturation state that may affect prognosis and treatment.

In the case shown below, taken from a report by Tsao, et al., you can see that even based on side scatter and CD45 something is amiss.

Where there should be 3 blood populations, Lymphs, Monos, and Grans, we see 4. 

These CD45 dim cells are leukemia blasts.

Immunophenotyping by Flow Cytometry | Expert Cytometry | Lymphs, Monos, and Grans

Looking more closely at these blasts as shown in the other plots, we can see that they are brightly positive for CD19, surface immunoglobulin, and CD20. CD20, as it turns out is a very important marker prognostically.

This is one indicator of mature B-ALL, making prognosis poor when following the traditional chemotherapeutic cycles used for B-ALL.

However, more intensive chemotherapy given along with Rituximab (as seen here) can improve outcome. Regardless of whether you misdiagnose mature B-ALL positively or negatively, when someone’s health is on the line you do not want to make mistakes.

6 Keys To Running Clinical Flow Experiments

1. The most important skill is to become VERY familiar with the patterns of normal samples so that you recognize abnormal samples. Run plenty of normal controls.

2. Keep your cytometer in excellent working order. Besides running normal human samples, run your alignment check beads, and perhaps the commercially available QC cell samples from Streck.

3. Know what markers are important for your lab. The Bethesda Consensus has a list of consensus reagents that are agreed to be important.

4. From that consensus, your lab could use a shotgun approach, using many antibodies in many parallel tubes to exhaustively characterize each sample. While costly, this means rarely needing to restain a sample.

5. Or, you might choose to use a screening approach in your lab, looking to use fewer antibodies at first to narrow down malignancy, and then retaining for further differentiation.

6. Make sure your data is de-identified and secure. HIPAA is serious business. Password protect, and if possible, encrypt your computers.

To learn more about performing proper clinical flow cytometry experiments and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

5-Point Guide To Buying A New Microscope For Your Lab

5-Point Guide To Buying A New Microscope For Your Lab

By: Heather Brown-Harding, PhD

Have you ever noticed how painful it can be to purchase a new microscope? It would be hard to miss – this can be a frustrating process. A lot of scientists and students consider the new microscope hunt quite scary for a variety of reasons. It might be that you’re worried you won’t get the right microscope and that you’ll regret it, or you may find that dealing with salespeople, in general, makes you kind of uncomfortable. But remember, salespeople are just human beings like you and me, and if we can treat them as such, the whole process of…

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

By: Tim Bushnell, PhD

In the flow cytometry community, SPADE (Spanning-tree Progression Analysis of Density-normalized Events) is a favored algorithm for dealing with highly multidimensional or otherwise complex datasets. Like tSNE, SPADE extracts information across events in your data unsupervised and presents the result in a unique visual format. Given the growing popularity of this kind of algorithm for dealing with complex datasets, we decided to test the SPADE algorithm in 5 software packages, including Cytobank, FCS Express, FlowJo, R, and the original, free software made available by the author of SPADE. Which was the fastest?

Ask These 7 Questions Before Purchasing A Flow Cytometer

Ask These 7 Questions Before Purchasing A Flow Cytometer

By: Tim Bushnell, PhD

I am still convinced that my first cell sorter was possessed. The number of issues that I had with the system remains hard for me to believe, even after all these years. It had been purchased, in part, from one vendor because the sales rep for a competitor was nowhere to be found. At that time, I admit I wasn’t overly diligent in my research process. Since then, I’ve pinpointed some critical questions that need to be answered before purchasing a new instrument. At the end of the process, a shiny new instrument will arrive at your facility. Make sure…

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

By: Tim Bushnell, PhD

FlowJo is a powerful tool for performing and analyzing flow cytometry experiments, if you know how to use it to the fullest. This includes understanding embedding and using keywords, the FlowJo compensation wizard, spillover spreading matrix, FlowJo and R, and creating tables in FlowJo. Extending your use of FJ using these hacks will help organize your data, improve analysis and make your exported data easier to understand and explain to others. Take a few moments and explore all you can do with FJ beyond just gating populations.

Instrument Quality Control For Reproducible Flow Cytometry Experiments

Instrument Quality Control For Reproducible Flow Cytometry Experiments

By: Tim Bushnell, PhD

The flow cytometer is an integral component of any flow cytometry experiment, and special attention should be paid to ensuring that it is working correctly and consistently. As an end-user, the researcher should be able to sit down at a machine and know that it is performing the same way today as it was yesterday and last week. Equally important is that if any changes in instrument performance have occured, the end-user knows how they have been addressed and corrected, rather than letting them fester and potentially affect the results. Quality control measurements can include a variety of targets, such…

Statistical Challenges Of Rare Event Measurements In Flow Cytometry

Statistical Challenges Of Rare Event Measurements In Flow Cytometry

By: Tim Bushnell, PhD

It is necessary to sort through hundreds of thousands or millions of cells to find the few events of interest. With such low event numbers, we move away from the comfortable domain of the Gaussian distribution and move into the realm of Poisson statistics. There are 3 points to consider to build confidence in the data that the events being counted are truly events of interest and not random events that just happen to fall into the gates of interest.

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

By: Tim Bushnell, PhD

Preparing for rare event analysis requires an understanding of the power and limitation of the instrument to be used. From how fast to run the fluidics, to how the signal is processed to the number of gates that can be used in the sorting experiment, each factor impacts the outcome of the experiment.

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

By: Tim Bushnell, PhD

With the added emphasis on reproducibility, it is critical to look at every step where experiments can be improved. No single step makes an experiment more reproducible, rather it is a process, making changes at each stage that leads to reproducibility. Antibodies comprise a critical component that needs to be reviewed. As Bradbury et al. in a commentary in Nature pointed out, the global spending on antibodies is about $1.6 billion a year, and it is estimated about half of that money is spent on “bad” antibodies. This does not include the additional costs of wasted time and effort by…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.