The Difference Between Purity, Single Cell, And Recovery Cell Sorting Techniques

If you have experience sorting different kinds of cell types on a droplet sorter, you may have noticed that sorting efficiency often seems closely tied to the cell and sample type.

For instance, you may have experienced a better outcome, such as a higher efficiency and more cells recovered, after sorting lymphocytes versus sorting an adherent cell line. There are some fundamental concepts that underpin this phenomenon, and understanding them will help you perform better cell sorting experiments.

What Is Flow Cytometry Cell Sorting Efficiency?

Sorting efficiency, in fundamental terms, is a real-time measurement, generated by the instrument, of how successfully its sorting system is able to resolve cells that we want to sort (target events) from cells we do NOT want to sort (non-target events).

Note that we are talking about the sorting system’s ability to resolve events here (the droplets) and NOT the electronics system.

cell sorting techniques | Expert Cytometry | cell cytometer

Efficiency is calculated with the following equation:

The results of this equation are highly dependent on two aspects of the sort: 1) the sort mode chosen for the sort and 2) the setup of the sorting system. Sort modes are sets of rules that instruct the instrument on what to do in situations that I often refer to as “ambiguous.”

In order for the instrument’s sort output to be acceptable with respect to the researcher’s needs, it is not sufficient to simply tell the instrument WHAT to sort (i.e. assign a sort region), but is also critical to tell the instrument HOW to sort the target population. The HOW is determined by the sort modes.

Purity, Single, And Recovery Cell Sorting Modes

If high purity is critical for the downstream application, the sorter must be instructed to exclude any target events from the sort that fall close to any non-target events (usually within one half of a droplet). Otherwise, a non-target event can haphazardly be sorted along with the target events. This kind of sort mode is often called “Purity” or “Purify” mode.

Alternatively, if extremely accurate counting of the output cells is critical for the downstream application—for single cell sorting, for example—“Single” or “Single Cell” mode is often used.

Finally, sometimes it is important to recover every single cell possible from the sort, and there’s not much concern for purity. In this case, we tell the instrument to ignore any rules and to sort everything that falls into the sort gate. These modes are often called “Yield” or “Recovery” modes and will always result in efficiencies of 100%.

Target cells that are sorted are termed sorts, and target cells that are not sorted due to violation of the sort mode rules are often called conflicts, coincidences, or aborts.

Although every type of sorter has its own way of implementing sort modes, all sorters must and do include them. In essence, these modes are comprised of combinations of masks that define where a cell can and cannot be in order for a sort to take place.

What Is A Flow Cytometry Cell Sorter “Mask”?

A certain type of mask, often called the “purity mask,” defines how close a non-target cell can come to a target cell in order to mark that target cell for sorting.

Another mask, often called the “yield mask,” defines how many drops should be sorted in order to include a target cell that may be close to a droplet boundary. In this case, the droplet to sort in order to capture this capricious cell is ambiguous and two droplets may be sorted in order to capture it.

Instruments define where cells fall in relation to droplets in relation to the cells’ passage through the lasers. The only place on the instrument where it can “see” cells is at the laser—it cannot measure where the cells are when the stream breaks into droplets—so the system effectively predicts where the cells will fall in droplets, to a certain degree of resolution that depends on the instrument’s electronics, by relating the timing of cells as they pass through the lasers with respect to the pattern by which droplets form.

It is important to emphasize here that the instrument’s determination of cell positions in droplets are predictions, so there is a degree of uncertainty here that requires a buffer zone between events, determined by the masks, to ensure that the sort outcome is as desired. Additionally, cells may speed up or slow down, depending on the sample type and instrument, between the laser interrogation point and the droplet break-off, compounding uncertainty.

Why Cell Sorters Count Droplets, Not Cells

In addition to sort modes, the sort set-up and sort conditions are tightly bound to the efficiency and sort outcome.

The relevant parameters are primarily the droplet frequency, the event rate, and the percent positive (of the total number of events) of the target population. To understand this relationship, it is critical to keep in mind that when we sort we are NOT really sorting cells, but rather, we are sorting droplets.

In other words, the fundamental sorting unit on a droplet deflection sorter is NOT the cell but is the droplets that (ideally) contain the cell. Therefore, in order to sort, the stream of sheath fluid must be partitioned into discrete sorting units or droplets under controlled conditions.

The number of unique partitions depends on the droplet drive frequency. The higher the frequency, the more droplets are generated per second. Most importantly, the rate of droplet formation, once determined at setup, never changes during the sort.

Understanding the difference between cell sorting efficiency, purity, and recovery cell sorting techniques will help you perform better sorting experiments. When performing a sort, make sure you select the proper sort mode, whether it be purity, single cell, or recovery (the latter is sometimes referred to as yield). Remember, cell sorters use masks to predict which droplets, not cells, to sort. By keeping these facts in mind the next time you sort cells, your experiment will be more successful.

To learn more about getting your flow cytometry data published and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

The Power Of Spectral Viewers And Their Use In Full Spectrum Flow Cytometry

The Power Of Spectral Viewers And Their Use In Full Spectrum Flow Cytometry

By: Tim Bushnell, PhD

What photon from yonder fluorochrome breaks?  It is … umm… hmmm. Let me see. Excitation off a 561 nm laser, with an emission maximum of 692 nm. I’m sure if Shakespeare was a flow cytometrist, he might have written that very scene. But the play is lost in time. However, since the protagonist had difficulty determining what fluorochrome was emitting photons, let’s consider how this could be figured out. In my opinion, one of the handiest flow cytometry tools is the spectral viewer. This tool helps visualize the excitation and emission profile of different fluorochromes, as well as allowing you…

3 Must-Have High-Dimensional Flow Cytometry Controls

3 Must-Have High-Dimensional Flow Cytometry Controls

By: Tim Bushnell, PhD

Developments such as the recent upgrade to the Cytobank analysis platform and the creation of new packages such as Immunocluster are reducing the computational expertise needed to work with high-dimensional flow cytometry datasets. Whether you are a researcher in academia, industry, or government, you may want to take advantage of the reduced barrier to entry to apply high-dimensional flow cytometry in your work. However, you’ll need the right experimental design to access the new transformative insights available through these approaches and avoid wasting the considerable time and money required for performing them. As with all experiments, a good design begins…

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

By: Tim Bushnell, PhD

Fluorochrome, antibodies and detectors are important. The journey of a thousand cells starts with a good fluorescent panel. The polychromatic panel is the combination of antibodies and fluorochromes. These will be used during the experiment to answer the biological question of interest. When you only need a few targets, the creation of the panel is relatively straightforward. It’s only when you start to get into more complex panels with multiple fluorochromes that overlap in excitation and emission gets more interesting.  FLUOROCHROMES Both full spectrum and traditional fluorescent flow cytometry rely on measuring the emission of the fluorochromes that are attached…

Flow Cytometry Year in Review: Key Changes To Know

Flow Cytometry Year in Review: Key Changes To Know

By: Meerambika Mishra

Here we are, at the end of an eventful year 2021. But with the promise of a new year 2022 to come. It has been a long year, filled with ups and downs. It is always good to reflect on the past year as we move to the future.  In Memoriam Sir Isaac Newton wrote “If I have seen further, it is by standing upon the shoulders of giants.” In the past year, we have lost some giants of our field including Zbigniew Darzynkiwicz, who contributed much in the areas of cell cycle analysis and apoptosis. Howard Shapiro, known for…

What Star Trek Taught Me About Flow Cytometry

What Star Trek Taught Me About Flow Cytometry

By: Tim Bushnell, PhD

It is no secret that I am a very big fan of the Star Trek franchise. There are many good episodes and lessons explored in the 813+ episodes, 12 movies (and counting). Don’t worry, this blog is not going to review all 813, or even 5 of them. Instead, some of the lessons I have taken away from the show that have applicability to science and flow cytometry.  “Darmok and Jalad at Tanagra.”  (ST:TNG season 5, episode 2) This is probably one of my favorite episodes, which involves Picard and an alien trying to establish a common ground and learn…

5 Flow Cytometry Strategies That Sun Tzu Taught Me

5 Flow Cytometry Strategies That Sun Tzu Taught Me

By: Tim Bushnell, PhD

Sun Tzu was a Chinese general and philosopher. His most famous writing is ‘The Art of War’, and has been studied by generals and CEOs, to glean ideas and strategies to help their missions. I was recently rereading this work and thought to myself if any of Sun Tzu’s lessons could apply to flow cytometry.  So I have identified 5 points that I think lend themselves to thinking about flow cytometry.  “Quickness is the essence of the war.” In flow cytometry, speed is of the essence. The longer the cells are out of their natural environment, the less happy they…

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

By: Meerambika Mishra

Mastering foundational concepts are imperative for successfully using any technique or system.  Robert Heinlein introduced the term ‘Grok’  in his novel Stranger in a Strange Land. Ever since then it has made its way into popular culture. To Grok something is to understand it intuitively, fully. As a cytometrist, there are several key concepts that you must grok to be successful in your career. These foundational concepts are the key tools that we use day in and day out to identify and characterize our cells of interest.  Cells Flow cytometry measures biological processes at the whole cell level. To do…

Which Fluorophores To Use For Your Microscopy Experiment

Which Fluorophores To Use For Your Microscopy Experiment

By: Heather Brown-Harding, PhD

Fluorophore selection is important. I have often been asked by my facility users which fluorophore is best suited for their experiments. The answer to this is mostly dependent on whether they are using a widefield microscope with set excitation/emission cubes or a laser based system that lets you select the laser and the emission window. Once you have narrowed down which fluorophores you can excite and collect the correct emission, you can further refine the specific fluorophore that is best for your experiment.  In this blog  we will discuss how to determine what can work with your microscope, and how…

4 No Cost Ways To Improve Your Microscopy Image Quality

4 No Cost Ways To Improve Your Microscopy Image Quality

By: Heather Brown-Harding, PhD

Image quality is critical for accurate and reproducible data. Many people get stuck on the magnification of the objective or on using a confocal instead of a widefield microscope. There are several other factors that affect the image quality such as the numerical aperture of the objective, the signal-to-noise ratio of the system, or the brightness of the sample.  Numerical aperture is the ability of an objective to collect light from a sample, but it contributes to two key formulas that will affect your image quality. The first is the theoretical resolution of the objective. It is expressed with the…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.