Strengths And Weaknesses Of Isotype Controls In Flow Cytometry

Controls are critical for minimizing the effects of the variables in a scientific experiment so that the effect of the independent variable can be accurately measured.

In flow cytometry, there are a host of important controls necessary to properly interpret data generated in these experiments. Some of these controls include compensation, fluorescence minus one (FMO), stimulated and unstimulated, reference, and controls.

When it becomes time to publish, the proper use of these controls is critical in convincing the reviewer and reader that the data has been properly analyzed.

The isotype control is an experimental control where a sample is stained with an irrelevant antibody with the same isotype as the target antibody. Cells are gated and positivity is set based on the background staining of this isotype control.

The use of the isotype control to set negativity remains a topic of discussion and can confuse the novice to flow cytometry, especially when a reviewer may request why these controls were not included in a submitted paper.
Overall, the isotype control is one that is often overinterpreted and can provide little additional information in an analysis.

As Keeney and co-workers stated in their 1998 paper, “Isotype controls in the analysis of lymphocytes and CD34+ stem and progenitor cells by flow cytometry — time to let go!”

Recent experiments suggest that isotypes might be irrelevant

(Author emphasis).

Clearly, the use of the isotype control is ingrained in the scientific community, and vendors are more than happy to sell you one (or more).

Delving deeper into this specific control and evaluating the strengths and weaknesses can help you to come to your own conclusion on if and when to use an isotype control in your flow cytometry experiments.

1. What is an isotype?

As a B cell matures, it undergoes V(D)J recombination, which results in the production of the B cell receptor (BCR). After selection in the bone marrow, the B cells circulate to secondary lymphoid organs, where they are constantly exposed to new antigens.

When the BCR binds an antigen, the B cell becomes activated and can secrete antibodies as well as generate a memory cell, to provide long-term protection.

Class switch recombination occurs in mature cells upon stimulation, and in the presence of signaling molecules. The variable region of the antibody is retained, while the constant region of the heavy chain is changed, based on the specific signal molecules present at the time. This process is illustrated below.

From: Wikimedia.org

Isotype control explained

Thus, the isotype is changed.

2. What is an isotype control?

An isotype control is an antibody to an irrelevant target that shares the same heavy and light chain as the target antibody.

For example, the anti-human CD3 antibody HIT3a has the isotype of Mouse IgG2a, κ. Thus, one would look for an isotype control with the same characteristics.

There are several assumptions that are made when an isotype control is used:

  1. There is no target for the isotype control antibody expressed on the cells of interest.   The problem with this assumption is that the target of the isotype control is not always known. For example, one can purchase Mouse IgG2a, κ, clone MOPC-173 as an isotype control for CD3 (clone HIT3a). However, the antigen details of the MOPC-173 clone, as described on the BioLegend website (and many other vendor’s sites) states: Antigen details Thus, the target is not known, it was only selected as an isotype control because of screening against various samples. This does not mean that the target is not expressed on your specific cells of interest, but only that it doesn’t bind in common tissues.
  2. The non-specific binding of the isotype control has similar characteristics to the target antibody. There are three factors to consider in antibody binding:
    • Specific binding — this is the binding of the antibody to the target of interest. This is what we are interested in.
    • Fc receptor mediated binding — this is a specific binding of the constant region of an antibody to the Fc receptor expressed on certain cell types. Generally, this is not something we are interested in, and is usually dealt by various blocking methods.
    • Non-specific binding — this is off-target binding of the antigen to any protein in the cell. If the antibody can’t find the target, there is a chance it will bind to another protein. This is often driven by antibody concentration, and one of the critical reasons for titration.Since we don’t necessarily know the target of the isotype control, it is impossible to know what the off-target binding will be. We are left with the fact that the isotype antibody has been ‘tested’ against a standard series of cells and cannot be sure that the NSB of the two reagents will be similar.
  3. The fluorochrome to protein (F/P) ratio is the same between the isotype control and the target antibody.   The F/P ratio represents the amount of fluorochrome that is bound to the antibody. In some cases (for large fluorochromes like PE and APC), this is typically in the 1/1 range. However, for smaller fluorochromes, this is not the case, and the labeling of each antibody must be optimized. Thus, unless you know the F/P ratio of both the target antibody and the isotype control, differences in staining and fluorescence could be due to an F/P difference.

3. Should I use isotype controls?

That is the real question.

In addition to the Keeney paper mentioned above, there are several papers that suggest to not rely on isotype controls, including Maecker and Trotter (2006) and Hulspas et al., (2009).

Most recently, an excellent article by Andersen and coworkers (2016) explored the question of how best to block nonspecific binding. Their work was performed on monocytes and macrophages, which contain large amounts of Fc-Receptors.

Blocking nonspecific binding

Figure 1 from Andersen et al., (2017)

This is Figure 1 from Andersen’s paper showing how, in the absence of blocking, the isotype control (IgG1) binds at a much higher level than the specific binding for Tie2, a protein known to be expressed at low levels on monocytes.

However, the plot gets more interesting as the authors explore how best to block this Fc mediated binding of Isotype controls, which they further demonstrate was specific to the Monocyte subset, which is shown in the third figure of this paper. Interestingly enough, the authors demonstrated that this nonspecific binding was only seen with the IgG1 and IgG2a isotype controls.

Binding of isotype controls

Figure 3 from Anderson et al. (2016).

The final piece from this paper is the report that different lots of the same isotype from the same vendor showed different binding responses. Again, calling into significant question the use of isotype controls in the setting of gates to determine positivity of a given antigen.

The conclusion from this paper nicely sums up the best practices researchers should be using — and it doesn’t include isotype controls. To quote from Andersen’s paper:

Summary of best practices for isotype controls

There is one, albeit small, use for isotype controls, also illustrated in the Andersen paper. An isotype control can be used to show that there was poor or incomplete blocking of specific subsets being labeled. That is it.

Looking at all the data and discussions, from the 1998 Keeney paper to the most recent work by Andersen, it is clear that the hypothesis that an isotype control can show the background or nonspecific binding on cells must be rejected. If a reviewer rejects your paper because of the lack of isotype controls, you now have the needed information to rebut those arguments. Likewise, if someone is using an isotype control to set background staining levels, this information can help them realize that they are wasting time and money by using this control for that purpose.

To learn more about the strengths and weaknesses of isotype controls in flow cytometry, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

The Power Of Spectral Viewers And Their Use In Full Spectrum Flow Cytometry

The Power Of Spectral Viewers And Their Use In Full Spectrum Flow Cytometry

By: Tim Bushnell, PhD

What photon from yonder fluorochrome breaks?  It is … umm… hmmm. Let me see. Excitation off a 561 nm laser, with an emission maximum of 692 nm. I’m sure if Shakespeare was a flow cytometrist, he might have written that very scene. But the play is lost in time. However, since the protagonist had difficulty determining what fluorochrome was emitting photons, let’s consider how this could be figured out. In my opinion, one of the handiest flow cytometry tools is the spectral viewer. This tool helps visualize the excitation and emission profile of different fluorochromes, as well as allowing you…

Fickle Markers: Solutions For Antibody Binding Specificity Challenges

Fickle Markers: Solutions For Antibody Binding Specificity Challenges

By: Tim Bushnell, PhD

Reproducibility has been an ongoing, and important, concept in the sciences for years.  In the area of biomedical research, the alarm was sounded by several papers published in the early 2010’s.  Authors like Begley and Ellis, Prinz and coworkers, and Vasilevsky and colleagues, among others reported an alarming trend in the reproducibility of pre-clinical data.  These reports indicated between 50% to almost 90% of published pre-clinical data were not reproducible.  This was further highlighted in the article by Freedman and coworkers, who tried to identify and quantify the different sources of error that could be causing this crisis.  Figure 1,…

5 Common Flow Cytometry Questions, Answered

5 Common Flow Cytometry Questions, Answered

By: Tim Bushnell, PhD

I want to thank all of you who send us your questions about flow cytometry, so I thought I would dip into the old email bag and answer a few of the common ones here.  If your question isn’t answered this time, look for it to be answered in a future blog post.  Of course, if you want us to cover a specific topic, drop us a line.  1. How Fast Can I Go? This is  a common question. The allure of the ‘hi’ button is hard to resist.  The faster you go, the sooner you are finished with data…

Combining Flow Cytometry With Plant Science, Microorganisms, And The Environment

Combining Flow Cytometry With Plant Science, Microorganisms, And The Environment

By: Tim Bushnell, PhD

My first introduction to flow cytometry was talking to a professor who’d brought one on a research cruise to study phytoplankton. It was only later that I was introduced to the marvelous world that’s been my career for over 20 years.   In that time, I’ve had the opportunity to work with researchers in many different areas, exposing me to a wide variety of cell types and more important assays. What continues to amaze me is the number of different parameters we can measure, not just the number of fluorochromes, but the information we can extract from samples – animal, vegetable…

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

By: Tim Bushnell, PhD

Numbers are all around us.  My personal favorite is ≅1.618 aka ɸ aka ‘the golden ratio’.  It’s found throughout history, where it has influenced architects and artists. We see it in nature, in plants, and it is used in movies to frame shots. It can be approximated by the Fibonacci sequence (another math favorite of mine). However, I have not worked out how to apply this to flow cytometry.  That doesn’t mean numbers aren’t important in flow cytometry. They are central to everything we do, and in this blog, I’m going to flit around numbers-based questions that I have received…

3 Must-Have High-Dimensional Flow Cytometry Controls

3 Must-Have High-Dimensional Flow Cytometry Controls

By: Tim Bushnell, PhD

Developments such as the recent upgrade to the Cytobank analysis platform and the creation of new packages such as Immunocluster are reducing the computational expertise needed to work with high-dimensional flow cytometry datasets. Whether you are a researcher in academia, industry, or government, you may want to take advantage of the reduced barrier to entry to apply high-dimensional flow cytometry in your work. However, you’ll need the right experimental design to access the new transformative insights available through these approaches and avoid wasting the considerable time and money required for performing them. As with all experiments, a good design begins…

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

By: Tim Bushnell, PhD

Fluorochrome, antibodies and detectors are important. The journey of a thousand cells starts with a good fluorescent panel. The polychromatic panel is the combination of antibodies and fluorochromes. These will be used during the experiment to answer the biological question of interest. When you only need a few targets, the creation of the panel is relatively straightforward. It’s only when you start to get into more complex panels with multiple fluorochromes that overlap in excitation and emission gets more interesting.  FLUOROCHROMES Both full spectrum and traditional fluorescent flow cytometry rely on measuring the emission of the fluorochromes that are attached…

Flow Cytometry Year in Review: Key Changes To Know

Flow Cytometry Year in Review: Key Changes To Know

By: Meerambika Mishra

Here we are, at the end of an eventful year 2021. But with the promise of a new year 2022 to come. It has been a long year, filled with ups and downs. It is always good to reflect on the past year as we move to the future.  In Memoriam Sir Isaac Newton wrote “If I have seen further, it is by standing upon the shoulders of giants.” In the past year, we have lost some giants of our field including Zbigniew Darzynkiwicz, who contributed much in the areas of cell cycle analysis and apoptosis. Howard Shapiro, known for…

What Star Trek Taught Me About Flow Cytometry

What Star Trek Taught Me About Flow Cytometry

By: Tim Bushnell, PhD

It is no secret that I am a very big fan of the Star Trek franchise. There are many good episodes and lessons explored in the 813+ episodes, 12 movies (and counting). Don’t worry, this blog is not going to review all 813, or even 5 of them. Instead, some of the lessons I have taken away from the show that have applicability to science and flow cytometry.  “Darmok and Jalad at Tanagra.”  (ST:TNG season 5, episode 2) This is probably one of my favorite episodes, which involves Picard and an alien trying to establish a common ground and learn…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.