4 Gating Controls Your Flow Cytometry Experiment Needs To Improve Reproducibility

To reproduce reliably in flow cytometry, one must control the gate.

The identification of the target cells of an experiment is the critical first step to performing the secondary analysis that will be used to judge the biological hypothesis and is done by peeling away the layers of cells that do not meet the criteria.

This involves the data reduction method of ‘gating’ with the researcher as gatekeeper, controlling what may pass and what shall not pass, based on the controls designed for the specific experiment.

It is disappointing to realize that in the paper, Maecker et al., the authors evaluated different models for conducting clinical trials and found that individual labs experienced a ~20% CV in the data analysis whereas a central lab showed only a ~4% variance in data analysis.

One of the best ways to improve gating is to ensure the most appropriate controls are identified and collected in the experiment.

How these controls are used to identify the population of interest is also critical to improving this process. There are 4 common gating controls that can be used for improving gating consistency and reproducibility:

1. Fluorescence Minus One (FMO control).

The term Fluorescence Minus One (FMO) was first introduced in this Cytometry paper in 2001. The FMO control is designed to identify the effects of spectral overlap of fluorochromes into the channel of interest.

This overlap can reduce the sensitivity of measurement in the channel of interest and make identifying the true positive population difficult. The FMO control is performed by staining the cells of interest with all fluorochromes except one. When the data is displayed, the spread of the data in the channel of interest becomes apparent, as shown in the figure below.

Here, human PBMCs were stained with FITC, PE, CY5.5 PE and APC. The left panel shows the unstained sample and the right panel, the fully stained sample. The middle panel shows the PE FMO control.

flow cytometry gating isotype control | Expert Cytometry | reproducibility of measurements

If the unstained control was used to set positivity, as shown by the red line, it would appear all the cells would be PE positive. However, when the same cells are viewed in the context of the FMO control, it becomes clear that there is spread of the signal, and based on the blue FMO bound line, it is clear these cells are not PE positive.

The FMO control is a valuable control and should be run with all combinations during panel development. Through this development cycle, the researcher will be able to identify the critical FMO controls that are necessary for proper gate placement.

The FMO control is especially essential when attempting to measure rare events, identify emergent markers, or where there is a continuum of expression.

2. Internal Negative Controls (INCs).

Internal Negative Controls (INCs) are those cells in the staining sample that do not express the marker of interest. Unlike the FMO control, where one reagent is left out, the INC is exposed to all the markers, but biologically does not express the marker of interest.

flow cytometry gating isotype control | Expert Cytometry | reproducibility of measurements

In this case, the INC can help identify and address proper gating when there is non-specific binding of the antibody. This control takes advantage of the fact that we know a bit of the biology of the system and do not expect that the INC cells will bind with the target marker. This, of course, needs to be confirmed in the literature and through experimentation, but leads to a powerful control for proper gate placement. 

In this figure, the data on the left comes from the identified INC cells. They are plotted against CD4+, which is our population of interest.

To help set the gate, a quadrant marker can be used to help track the boundary of the INC. As can be seen, the target cells are clearly positive for the marker of interest, and the INC helps ensure we have identified the correct gate.

3. Unstimulated control.

A third control, useful for stimulation experiments, is the unstimulated control that Maecker and Trotter discuss in their paper from 2006.

flow cytometry gating isotype control | Expert Cytometry | reproducibility of measurements

The unstimulated control again relies on the biology of the system to assist in setting the proper gate. The unstimulated control also takes into account the background binding of the target antibody, since the unstimulated cells should not be expressing the target. 

As shown in this figure, there is some background binding of the Activation Maker target on the un-stimulated cells. The FMO (left panel) is used to correct for issues of spectral spreading into the Activation Maker channel, but alone does not allow the proper gate placement. It is only when the FMO is combined with the unstimulated control that the best gate placement identified.

4. Isotype control.

The final control to consider is the isotype control. The concept is that one stains cells with an irrelevant antibody that has the same isotype as the target antibody and labeled with the same fluorochrome. This is supposed to allow for identification of the background binding caused by the specific antibody isotype.

The use of this control remains controversial.  

Several papers, such as this one from Keeney et al., call into question the use of isotype controls for setting gates. Maecker and Trotter caution on reliance of the isotype control, and show an excellent figure (Figure 2) where PE-labeled isotype controls show wide variability of staining on small lymphocytes.

When using an isotype control, one makes several assumptions:

  1. That the affinity of the variable region on the isotype has similar characteristics for secondary targets as the target antibody.
  2. There are no primary targets for the isotype Ab to bind to (and do you know what the primary target is for the isotype?).
  3. The fluorochrome to protein (F/P) ratio is the same (and how do you titrate an isotype control?)

We cannot easily know the answer to #1 or #2 and must trust the vendor that the Ab target will not bind to the cells of interest.

Other than with large fluorochromes (PE, APC, etc.), where the F/P is usually 1:1 (due to the size of these fluorochromes), antibodies can have very dramatic optimal F/P ratios for FITC and the Alexa dyes (for example), that have to be optimized out during labelling.

This information therefore has to be collected by the vendor during QC and provided to the customer, something not always readily available on websites. 

The isotype control becomes another variable to be tested, validated, and optimized for marginal gain as a gating control. As Maecker and Trotter state,

“…It is thus a hit-or-miss prospect to find an isotype control that truly matches the background staining of a particular test antibody. And, remembering that we are using the isotype control to help us define the true level of background staining, this becomes a circular proposition…”

Where isotype controls can assist researchers is in assessing the success of the blocking of the cells.  In this case, if the cells are poorly blocked, the isotype control can reveal that, but should not be used to set gates.

In the continuing efforts to ensure consistent and reproducible data, the proper use of controls to establish the boundaries of gates is critical. With the exception of the isotype control, each of the controls discussed above serve a specific role in that process, and should be part of every experiment. This will help reduce the variability in the data in a given experiment, and when the use is communicated (or demonstrated) in publications, it will assist researchers seeking to reproduce the data in achieving similar results, while helping to reduce data analysis variability between institutions.

To learn more about getting your flow cytometry data published and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

Tools to Improve Your Panel Design – Determining Antigen Density

Tools to Improve Your Panel Design – Determining Antigen Density

By: Tim Bushnell, PhD

When a researcher chooses to use flow cytometry to answer a scientific question, they first have to build a polychromatic panel that will take advantage of the power of the technology and experimental design. When we set up to use flow cytometry to answer a scientific question, we have to design a polychromatic panel that will allow us to identify the cells of interest – the target of the research.  To identify these cells, we need to build a panel that takes advantage of the relative brightness of the fluorochromes, the expression level of the different proteins on the cell,…

This Is How Full Spectrum Cytometry Works

This Is How Full Spectrum Cytometry Works

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

My Proven 5-Point Fast Track To A Career In Flow

My Proven 5-Point Fast Track To A Career In Flow

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Up Your Stain Game With These 7 Non-Fluorescent Histology Dyes

Up Your Stain Game With These 7 Non-Fluorescent Histology Dyes

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

3 Ways Flow Cytometry Can Be Used To Research Bacteria

3 Ways Flow Cytometry Can Be Used To Research Bacteria

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Avoid Flow Cytometry Faux Pas: How To Set Voltage The Right Way

Avoid Flow Cytometry Faux Pas: How To Set Voltage The Right Way

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Discover The Myriad Applications Of Beads In Flow Cytometry

Discover The Myriad Applications Of Beads In Flow Cytometry

By: Tim Bushnell, PhD

What is the single-most important feature of a flow cytometry experiment? Arguably, it’s the stained cells that gather data about biological processes of interest. However, a flow cytometer can measure cell-like particles as well as cells, which opens the realm of cytometry to the use of microspheres. Most researchers are familiar with the 4-Cs that beads can be used for: Control, Calibration, Compensation, and Counting. Beyond the 4-Cs, many are familiar with the multiplex bead assays for measuring analytes. Today, we will take a look beyond these well-known uses and discover the myriad applications of the “Mighty Microspheres.”

Mass Cytometry Revolves Around These 5 Things

Mass Cytometry Revolves Around These 5 Things

By: Tim Bushnell, PhD

Because mass cytometry allows users to characterize masses so effectively, data can be normalized much more efficiently than what traditional fluorescent flow will permit. If there is no working CyTof at your institution, you can still partner with CyTof-friendly research institutions that have the technology on hand. And because the samples are fixed, you can ship them overnight. This way, they will be analyzed for you. Today’s article will summarize the functionality of mass cytometry technology. This tech has been commercialized largely by Fluidigm in the CyTof systems. There are 5 key points to cover, or takeaways, that cytometrists should…

3 Ways To Improve Flow Cytometry Troubleshooting

3 Ways To Improve Flow Cytometry Troubleshooting

By: Tim Bushnell, PhD

A lot of the troubleshooting is focused on fluidics issues. If you sit down and think about your workflow, and how you might want to add a couple of little tweaks here and there which will ultimately help you improve the quality of your data as well as aid you in identifying issues before they become problems your troubleshooting will be much smoother. Consider these three things, what do you before you start collecting data, ensure you have appropriate plots of time vs fluorescence for each of the lasers your using and apply appropriate gating procedures.

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.