How to Optimize Flow Cytometry Hardware For Rare Event Analysis

“Not everything that can be counted counts and not everything that counts can be counted.” — William Bruce Cameron (but often misattributed to Albert Einstein)

What does this quote mean in terms of flow cytometry? Flow cytometry can yield multi-parametric data on millions of cells, which makes it an excellent tool for the detection of rare biological events — cells with a frequency of less than 1 in 1,000.

With the development and commercialization of tools such as the Symphony, the ZE5, and others which can measure 20 or more fluorescent parameters at the same time, researchers now have the ability to characterize miniscule population subsets that continue to inspire more and more complex questions.

When planning experiments to detect — and potentially sort — rare events using flow cytometry, we need to optimize our hardware to ensure that optimal signals are being generated and that rare events of interest are not lost in the system noise. This noise is also exacerbated by poor practices when running the flow cytometer.

There are 3 areas of hardware limitations that we need to consider when performing rare event flow cytometry.

1. Speed of the fluidics

The first step in running cells on the flow cytometer is setting up the fluidics to ensure the best flow possible while minimizing coincident events and data spread.

Hydrodynamic focusing is the process which focuses our cells inside the core stream, pushes them along, and spreads them out along the velocity axis, so that the cells line up single file and go through the focal point of the laser beam.

But, if the differential pressure is increased, what happens?

An increase in differential pressure between the sheath fluid and the sample fluid being introduced to the flow cytometer causes the core stream to widen. And, as it widens, more cells can pass through the laser per unit time.

There are 2 reasons why this is a concern, especially for rare event analysis:

  1. 2 cells can pass through the laser at the same time, resulting in what is measured as a doublet, and therefore both must be excluded.

By having to exclude more cells, the chances of detecting a rare event decrease.

FIGURE 1: Impact of increasing differential pressure on flow cytometry data.

  1. As the core stream widens, the cells at the edge are more poorly illuminated, and therefore emit less intensely.

When we increase differential pressure, we increase the flow rate and core stream width, allowing the cells to move and meander within the core stream. Some of these cells will not be exposed to the full laser power.

Therefore, the CV of the data spreads and we lose resolution between 2 populations, as seen in the graph below, on the right.

FIGURE 2: Effects of differential pressure on flow cytometry data. Peak CVs spread at higher flow rates.

Thus, there is a trade off between speed of acquisition and the quality of your resolution.

Best practice for rare event analysis is to run the system at low differential pressure so that the event rate is no more than 10,000 events per second (depending on your instrument).

It is often even better to run at a lower rate, such as 5,000 events per second. While this means that acquisition time will take twice as long, the quality of data will be improved. Is the trade-off worth it? For rare event analysis, it is almost a requirement.

Newer technology, like acoustic focusing from Thermo Fisher, is helping to diminish this effect. Acoustic focusing uses a standing acoustical wave that forces the cells into the center of the core stream, allowing you to run much, much faster than a traditional flow cytometer, without the data spreading found in conventional systems relying on hydrodynamic focusing alone.

2. Coincident events and aborts

What is a coincident event and how does this impact the data?

It all starts with the measurement of the electronic pulse. The schematic of pulse generation is shown in Figure 3.

As a cell passes the laser intercept, photons are received by the PMT, which converts the photons into photocurrent. When the cell is fully inside the laser, the maximal number of photons is being generated and pulse reaches the peak (the height measurement) before falling back to 0.

Figure 3: Pulse generation as a cell passes through the laser.

A problem arises if a second cell passes into the laser intercept before the first pulse finishes being processed, and both events will be aborted, resulting in lost data.

Thus, the size of the pulse matters.

The size of the pulse is ultimately going to be the size of the cell plus the beam height.

A hypothetical 5-micron cell and a 20-micron laser beam yields a 25-micron pulse. The stream of a typical analyzer travels at 5 meters per second and 30 meters per second for a sorter. Thus, it takes roughly 0.83 microseconds on a cell sorter for the typical pulse to be processed.

On some instruments, there is an additional period added to this processing time, called the window extension, on BD instruments. This extension increases the time that the system is looking for a pulse and is depicted in Figure 4.

Figure 4: The impact of window extension on pulse processing.

Imagine a cell has just passed through the laser intercept and the pulse is being processed. The next event cannot enter this extended window space until this first cell leaves the window, otherwise it’s considered a coincident event and excluded. This window can be increased or decreased, based on the size of the cell.

The consequence of altering window extension is shown in Figure 5. Window extension was increased and the number of electronic aborts were measured using 2 different sort masks after approximately 600,000 events.

At higher window extensions, there can be as much as a 13% loss of events.

Figure 5: The effect of window extension on abort rate based on 2 different sort masks.

3. Electronic limitations set by manufacturers

The final piece of the hardware are those limitations that have been set by the vendors. These limitations can include the maximal number of events allowed in a file, the number of events per second that can be acquired, the flow rate, the number of gates in a gating hierarchy, and more.

It is critical to understand these limitations while planning the details of the experiment. For analytical flow, you may need to acquire multiple files of the same tube to ensure collection of sufficient event numbers. With sorting, gating hierarchy limitations require careful thought on how to identify the target cells.

Preparing for rare event analysis requires an understanding of the power and limitation of the instrument to be used. From how fast to run the fluidics, to how the signal is processed, to the number of gates that can be used in the sorting experiment, each factor impacts the outcome of the experiment. With these hardware limitations understood, the next step is to understand how to address the sample preparation and identification of the target cells.

To learn more about How to Optimize Flow Cytometry Hardware For Rare Event Analysis, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

5-Point Guide To Buying A New Microscope For Your Lab

5-Point Guide To Buying A New Microscope For Your Lab

By: Heather Brown-Harding, PhD

Have you ever noticed how painful it can be to purchase a new microscope? It would be hard to miss – this can be a frustrating process. A lot of scientists and students consider the new microscope hunt quite scary for a variety of reasons. It might be that you’re worried you won’t get the right microscope and that you’ll regret it, or you may find that dealing with salespeople, in general, makes you kind of uncomfortable. But remember, salespeople are just human beings like you and me, and if we can treat them as such, the whole process of…

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

By: Tim Bushnell, PhD

In the flow cytometry community, SPADE (Spanning-tree Progression Analysis of Density-normalized Events) is a favored algorithm for dealing with highly multidimensional or otherwise complex datasets. Like tSNE, SPADE extracts information across events in your data unsupervised and presents the result in a unique visual format. Given the growing popularity of this kind of algorithm for dealing with complex datasets, we decided to test the SPADE algorithm in 5 software packages, including Cytobank, FCS Express, FlowJo, R, and the original, free software made available by the author of SPADE. Which was the fastest?

Ask These 7 Questions Before Purchasing A Flow Cytometer

Ask These 7 Questions Before Purchasing A Flow Cytometer

By: Tim Bushnell, PhD

I am still convinced that my first cell sorter was possessed. The number of issues that I had with the system remains hard for me to believe, even after all these years. It had been purchased, in part, from one vendor because the sales rep for a competitor was nowhere to be found. At that time, I admit I wasn’t overly diligent in my research process. Since then, I’ve pinpointed some critical questions that need to be answered before purchasing a new instrument. At the end of the process, a shiny new instrument will arrive at your facility. Make sure…

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

By: Tim Bushnell, PhD

FlowJo is a powerful tool for performing and analyzing flow cytometry experiments, if you know how to use it to the fullest. This includes understanding embedding and using keywords, the FlowJo compensation wizard, spillover spreading matrix, FlowJo and R, and creating tables in FlowJo. Extending your use of FJ using these hacks will help organize your data, improve analysis and make your exported data easier to understand and explain to others. Take a few moments and explore all you can do with FJ beyond just gating populations.

Instrument Quality Control For Reproducible Flow Cytometry Experiments

Instrument Quality Control For Reproducible Flow Cytometry Experiments

By: Tim Bushnell, PhD

The flow cytometer is an integral component of any flow cytometry experiment, and special attention should be paid to ensuring that it is working correctly and consistently. As an end-user, the researcher should be able to sit down at a machine and know that it is performing the same way today as it was yesterday and last week. Equally important is that if any changes in instrument performance have occured, the end-user knows how they have been addressed and corrected, rather than letting them fester and potentially affect the results. Quality control measurements can include a variety of targets, such…

Statistical Challenges Of Rare Event Measurements In Flow Cytometry

Statistical Challenges Of Rare Event Measurements In Flow Cytometry

By: Tim Bushnell, PhD

It is necessary to sort through hundreds of thousands or millions of cells to find the few events of interest. With such low event numbers, we move away from the comfortable domain of the Gaussian distribution and move into the realm of Poisson statistics. There are 3 points to consider to build confidence in the data that the events being counted are truly events of interest and not random events that just happen to fall into the gates of interest.

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

By: Tim Bushnell, PhD

With the added emphasis on reproducibility, it is critical to look at every step where experiments can be improved. No single step makes an experiment more reproducible, rather it is a process, making changes at each stage that leads to reproducibility. Antibodies comprise a critical component that needs to be reviewed. As Bradbury et al. in a commentary in Nature pointed out, the global spending on antibodies is about $1.6 billion a year, and it is estimated about half of that money is spent on “bad” antibodies. This does not include the additional costs of wasted time and effort by…

How To Achieve Accurate Flow Cytometry Calcium Flux Measurements

How To Achieve Accurate Flow Cytometry Calcium Flux Measurements

By: Tim Bushnell, PhD

Dyes exist for the detection of everything from large nucleic acids to reactive oxygen species, and from lipid aggregates to small ions. Concentrations of physiologically important ions such as sodium, potassium, and calcium can be important indicators of health and disease. Calcium ions play an especially critical role in cellular signaling. As a signaling messenger, calcium is involved in everything from muscle contractions, to cell motility, to enzyme activity. Calcium experiments can be very informative, and with the advent of cheaper UV lasers, more and more researchers can use ratiometric measurements to evaluate the signaling processes in phenotypically defined populations.

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.