Skip to content

4 Fluidics Tips That Will Change Your Flow Data For The Better

Written by Tim Bushnell, PhD

Friday is the 4th of July in the US – and we celebrate that day with picnics, spending time OUTSIDE the lab and fireworks. And our Independence, but I’m not up for a political discussion right now. For flow geeks, fireworks are like flow cytometry – they happen in the dark, they are full of many bright colors, and we’re all looking for the patterns the colors make. So in honor of a day outside the lab, it seemed appropriate to talk about fluidics… going with the flow for best results. A flow cytometer has three major components – fluidics, electronics and optics. From setting the run speed (‘flow rate’), to cleaning the instrument after a run, to changing the sheath fluids, the typical researcher interacts mainly with the fluidics side of the system. The majority of flow cytometers on the market use a differential pressure to move the fluids and cells around the system. In these systems, the pressure of the sheath fluid sets the speed of the flow. The low, medium and high buttons on the instrument change the differential pressure between the sample and sheath.

1. Faster IS NOT better.

As the differential pressure increases (increasing from low -> med -> high) the size of the core stream is increased. This allows for more cells to pass by the intercept per second. However, that is not without consequences.

A. The spread of the data will increase due to the position of the cells within the laser interrogation point.

B. The number of coincident events will increase as more cells pass the intercept while the previous cell is being processed.

Screen Shot 2014-07-02 at 6.48.08 AM

2. Plot time as a measure of quality.

During acquisition, monitor how the sample is running by plotting time versus the fluorochromes being used. It is best to have a plot for each laser, so that if pressure related issues arise (which can affect the time delay between different lasers) they can be readily detected. Screen Shot 2014-07-02 at 6.50.44 AM

3. Sheath and the sample fluid do not mix … mostly.

Because of the laminar flow that is established and how hydrodynamic focusing constrains the core stream, the sample fluid and sheath fluid generally do not mix. This means that solutions like water can be used for the sheath fluid. There is one place, however, where mixing can occur. That is at the point where the sample is injected into the running sheath fluid, before the hydrodynamic focusing takes place. Generally this is not an issue, but if performing a Calcium flux experiment, it’s important to ensure that this area of mixing doesn’t disturb the calcium equilibrium that is being measured. Screen Shot 2014-07-02 at 6.52.33 AM

4. Wash the sample injection port before starting.

Many cleaning protocols use bleach and water to clean the SIP after each user. Sometimes (often!) users are in a rush and the water rinse is not completed. If this happens, the next user can lose valuable data as the bleach will negatively affect the fluorescence on the cells – especially those with APC. To prevent this, put a fresh tube of water on the instrument and run on high while getting the instrument setup for the next run. Screen Shot 2014-07-02 at 6.53.38 AM For those in the US, I hope you have a great holiday and enjoy looking for those patterns in the colored lights in the sky. For the rest of you, we’ll be back next week with more tips. Don’t forget to check our calendar for upcoming events.

Houston, U.S. (Register Online)

Aarhus, Denmark (Register Online)

Louisville, U.S. (Register Online)

If you can’t make a face-to-face course, download our online courses (now 25% off the original fee).

Tim Bushnell, PhD

BOOKS

Advanced Microscopy

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.
flow cytometry tablet eBook cover

Modern Flow Cytometry

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more. 

Advanced 4-10 Color Compensation

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.

Top 40 Networking Scripts For PhDs

If you want to get replies from top employers and recruiters, this ebook is for you. These networking scripts will show you the exact words ...

Informational Interviews For PhDs

If you want to learn how to set up and execute informational interviews with PhDs working in industry, this ebook is for you. Here, you ...

Industry Resume Guide For PhDs

If you have a PhD and want to create the perfect industry resume to attract employers, this ebook is for you. Here, you will get ...

Top 20 Industry Jobs For PhDs

If you want to learn about the top 20 industry careers for PhDs regardless of your PhD background, this ebook is for you. Here, you ...

Salary Negotiation For PhDs

If you have a PhD and want to learn advanced salary negotiation strategies, this ebook is for you. Here, you will learn how to set ...

Top 20 Transferable Skills For PhDs

If you want to learn the top 20 transferable skills the industry employers ranked as most important for PhDs to include on their resumes and ...

Related Posts You Might Like

We Tested 5 Major Flow Cytometry SPADE Programs for Speed – Here Are The Results

Written By: Tim Bushnell, PhD As a follow-up to our post on tSNE where we compared the speed of calculation in leading software packages, let’s ...
Read More

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

Written By: Tim Bushnell, PhD Primary data analysis, that is the analysis at the sample or tube level, is where the populations of interest are ...
Read More

Statistical Challenges Of Rare Event Measurements In Flow Cytometry

Written by Tim Bushnell, PhD To conclude our series on rare event analysis, it is time to discuss the statistics behind rare event analysis. The ...
Read More

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

Written by Tim Bushnell, PhD “Not everything that can be counted counts and not everything that counts can be counted.” — William Bruce Cameron (but ...
Read More

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

Written by Tim Bushnell, PhD Next to the flow cytometer itself, the most important component of a flow cytometry experiment comes down to the antibodies. ...
Read More

How To Achieve Accurate Flow Cytometry Calcium Flux Measurements

Written by Tim Bushnell, PhD Most flow cytometry experiments work with antibodies conjugated to a fluorochrome for some variation on immunophenotyping. However, any fluorochrome that ...
Read More