Skip to content

How To Perform A Flow Cytometry t-Test

Written by Tim Bushnell, Ph.D

The ultimate goal of any experiment is to analyze data and determine whether it supports or disproves a given hypothesis. To do that, scientists turn to statistics.

Statistics is a branch of mathematics dealing with the collection, analysis, interpretation, presentation, and organization of data. In applying statistics to, e.g., a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model process to be studied.

One of the first important concepts to take from this definition is the idea of a population. An example population might be all the people in the world who have a specific disease.

It is time and cost prohibitive to try to study all of these people, so the scientist must sample a subset of the population, such that this sample represents (as best as possible) the whole population. How big the population is and what fraction is sampled in the experiment contributes to the power of the experiment, a topic for another day.

Figure 1: Relationship of population, sample size, and statistics.

This sample size, and how it is obtained, should be described before one begins any experiments, as getting the population sampling correct is a critical component of improving reproducibility. Consequences of poor sample design can be found throughout history, such as the issues surrounding the use of Thalidomide in pregnant women.

The second critical component is to identify the question(s) that the experiments are designed to to test. This will lead the researcher to state the Null hypothesis (HO), which is what statistics are designed to test.

An additional factor that should be addressed at the beginning of the experimental process is the significance level (α value) — the probability of rejecting the null hypothesis when it is actually true (a Type I statistical error).

At the conclusion of the experiments, we collect the data to generate a P value, which we compare to the α value.

If the P value is less than the α value, the null hypothesis is rejected, and the findings are considered statistically significant. On the other hand, if the P value is greater than or equal to the α value, the null hypothesis cannot be rejected.

Once the experiments are done and the primary analysis is completed, it is time for the secondary analysis.

There are a host of different tests available, depending on what comparisons are being made and the distribution of the data (i.e. normally distributed, or not.) There is an excellent resource at the Graphpad Software website, makers of Graphpad Prism.

If we wish to compare either a single group to a theoretical hypothesis, or two different groups, and these groups are normally distributed, the test of choice is the Student’s t-Test, a method developed by William Gosset while working at Guinness Brewery.

Using the t-Test, the t-statistic is calculated on the distributions, which is an intermediate step on the way to calculating the P value. The P value is then compared to the threshold to determine if the data is statistically significant.

Assumptions About the Data

The t-Test assumes that the data comes from a normal (Gaussian) distribution. That is to say, the data observes a bell-shaped curve.

Figure 2: A normal distribution.

Although the t-Test was originally developed for small samples, it is also resistant to deviations from the normal distribution with larger sample sizes.
If the data doesn’t follow a normal distribution, a non-parametric test, such at the Wilcoxon or Mann-Whitney test, is best. Non-parametric tests rank the data and perform a t-Test on the ranked data, with the assumption that the ranked data is randomly distributed.

Performing a t-Test

The minimum information needed to perform a t-Test is the means, standard deviations, and number of observations for the two populations. As shown below :

Figure 3: Calculating a t-Test in Graphpad Prism (ver. 7) with input values calculated elsewhere.

The data is collected elsewhere, and the mean, standard deviation, and N are entered into the software. For visualization, a bar graph showing the average and standard deviation is plotted.

Using the analysis feature in the software, the appropriate statistical parameters are chosen (un-paired t-Test, threshold to 0.05 discussed below). The Welch correction is applied because the N’s are different between the two samples.

Prism generates a summary table and shows details in the red box. In this case, the experimental sample is statistically significantly different from the control, and we may reject the null hypothesis.

Another way to perform this test is to enter the data into your preferred program and let the software do the work, as shown below for Prism.

Figure 4: Calculating a t-Test in Graphpad Prism (ver. 7) by entering the data.

This second plotting method has the advantage of letting the reader see all the data points in the analysis.

Final Tips for Performing a t-Test

There are a few variations of the t-Test, based on sample size and variance in the data. One can perform a one- or two-tailed t-Test. The decision to use one versus the other is related to the hypothesis.

If the expected difference is in one direction, the one-tailed t-Test is performed. If it is not known, or the expected difference could be an increase or a decrease, the two-tailed t-Test is performed.

Figure 5: The null hypothesis for either a one-tailed (left) or two-tailed (right) t-Test.

In conclusion, to perform the t-Test, it is critical to start from the beginning of the experiment to establish several parameters, including the type of test, the null hypothesis, the assumptions about the data, the number of samples to be analyzed (Power of the experiment), and the threshold.

The experiments are performed, and only then, after the primary analysis is completed, is statistical testing performed.

Each software package has its specific methods of performing these tests, and we have shown you one (Graphpad Prism). It is recommended that you consult your local statistical community and see what they are using for their analysis.

By establishing the statistical plan at the beginning of the experiment, the planning for the rest of the experiment become easy. Likewise, one does not begin to chase a hypothesis with the data, rather the data stands alone to support or reject the hypothesis.

To learn more about How To Perform A Flow Cytometry t-Test, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Flow Cytometry Mastery Class wait list | Expert Cytometry | Flow Cytometry Training

Tim Bushnell, PhD

BOOKS

Advanced Microscopy

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.
flow cytometry tablet eBook cover

Modern Flow Cytometry

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more. 

Advanced 4-10 Color Compensation

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.

Top 40 Networking Scripts For PhDs

If you want to get replies from top employers and recruiters, this ebook is for you. These networking scripts will show you the exact words ...

Informational Interviews For PhDs

If you want to learn how to set up and execute informational interviews with PhDs working in industry, this ebook is for you. Here, you ...

Industry Resume Guide For PhDs

If you have a PhD and want to create the perfect industry resume to attract employers, this ebook is for you. Here, you will get ...

Top 20 Industry Jobs For PhDs

If you want to learn about the top 20 industry careers for PhDs regardless of your PhD background, this ebook is for you. Here, you ...

Salary Negotiation For PhDs

If you have a PhD and want to learn advanced salary negotiation strategies, this ebook is for you. Here, you will learn how to set ...

Top 20 Transferable Skills For PhDs

If you want to learn the top 20 transferable skills the industry employers ranked as most important for PhDs to include on their resumes and ...

Related Posts You Might Like

We Tested 5 Major Flow Cytometry SPADE Programs for Speed – Here Are The Results

Written By: Tim Bushnell, PhD As a follow-up to our post on tSNE where we compared the speed of calculation in leading software packages, let’s ...
Read More

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

Written By: Tim Bushnell, PhD Primary data analysis, that is the analysis at the sample or tube level, is where the populations of interest are ...
Read More

Statistical Challenges Of Rare Event Measurements In Flow Cytometry

Written by Tim Bushnell, PhD To conclude our series on rare event analysis, it is time to discuss the statistics behind rare event analysis. The ...
Read More

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

Written by Tim Bushnell, PhD “Not everything that can be counted counts and not everything that counts can be counted.” — William Bruce Cameron (but ...
Read More

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

Written by Tim Bushnell, PhD Next to the flow cytometer itself, the most important component of a flow cytometry experiment comes down to the antibodies. ...
Read More

How To Achieve Accurate Flow Cytometry Calcium Flux Measurements

Written by Tim Bushnell, PhD Most flow cytometry experiments work with antibodies conjugated to a fluorochrome for some variation on immunophenotyping. However, any fluorochrome that ...
Read More