How To Compensate A 4-Color Flow Cytometry Experiment Correctly

Compensation in flow cytometry is a critical step to ensure accurate interpretation of data. It is also one of the areas that’s steeped in mystery, myths and misinformation.

Before jumping into the best practices for compensation of flow cytometry experiments, it’s good to show what NOT to do when performing compensation.

Manually adjusting the compensation values based on how the populations look, or so-called ‘Cowboy Compensation’ (thanks to Joel Sederstrom for the term), is not the correct way to determine proper compensation.

For example, review the following figure, and ask yourself what is the best compensation value? This figure shows FITC on the Y-axis, spilling into the PE channel, on the X-axis…

Figure_1 (1)

Without knowing the median fluorescent intensity of the positives in the negative channel, or being able to evaluate the spread of the data, it is impossible to determine which of these above plots display the properly compensated values.

4 Steps To Compensating A 4-Color Experiment

The best practices for compensation involve following some very specific rules.These best practices also involve the use of automatic compensation protocols that are available in all major data analysis software packages.

(If you’re interested in following along with this blog, you can find the data used in this experiment at this link here.)

Step 1. Choose the correct carrier for compensation.

Compensation is a property of the fluorochrome you’re using in your experiments. The role of the carrier is to bring the fluorochrome to the laser intercept point.

The choice of the carrier is up to you, but for antibodies, the use of compensation beads is strongly recommended. Using beads offers several advantages for compensation, including…

  • Cells are not wasted when preparing your compensation controls.
  • All the antigen is captured in your solutions, not just some of it. This results in the brightest signal possible for your controls.
  • Clear positive and negative signals show up on your control plots.
  • Autofluorescence is not a factor since all the beads have the same autofluorescence values.

However, beads cannot be used for some dyes, like viability dyes (such as PI, 7AAD, DAPI), fluorescent proteins, and other protein reporters (redox dyes, JC1, Ca++ dyes).

Figure_2 (1)

The biggest concern with preparing proper compensation controls is that the fluorescence intensity of the controls must be at least as bright as that of the cells that the compensation will be applied to. Conversely, the amount of antibody the beads are stained with is less critical.

Very often, compensation beads are stained with too much antibody and as a result, the fluorescent signal goes off-scale. When this happens, do NOT turn down the voltage to bring the signal on-scale. Instead, simply re-stain the beads with less antibody. Often times, staining the beads with 1/2 to 1/10 the concentration used on the cells will keep the signal on-scale, while keeping the signal above that of the cells that the compensation is to be applied to.

Step 2:  Collect the data and make sure there is a sufficient number of events.

After staining the carrier, it’s time to collect the compensation controls. Since compensation is a statistical calculation, the more data collected, the more accurate the compensation will be.

As shown in this data below, as the number of collected events increases, the compensation values move towards the actual compensation value.

Figure_3 (1)

For bead-based compensation, it’s recommended to collect at least 10,000 events. For cells, it’s recommended to collect at least 30,000 events.

Step 3. Calculate compensation correctly.

As shown in Tung et al., (2004), how compensation is calculated is based on the matrix algebra.

Figure_4 (1)

For the above matrix to be calculated correctly, there needs to be a positive and a negative population in each sample. Since the autofluorescence of the positive and negative carrier need to be matched, you should NOT rely on a universal negative.

All major software compensation packages allow for the use of a single control for the negative population, but again, this should be avoided. In the figure below, unstained beads are shown in red, while unstained cells are shown in blue. As the figure shows, if the experiment is being compensated with beads, and a universal negative of unstained cells is being used, compensation will be incorrectly calculated (note the excess of ‘Primary Signal’).

Figure_5 (1)

However, if unstained beads are used in each sample, the resulting compensation values will be correct. As such, make sure ALL of your samples contain a positive and negative fraction in them. You should also make sure that you gate around each positive and negative fraction to define each compensation control for each specific fluorochrome.

Step 4. Apply the compensation values and inspect the results.

Once your compensation values have been calculated, it’s time to apply them to your data. At this point in the compensation process, it’s important to inspect your results. For example, the below figure displays data that has been properly compensated using beads.

Figure_6 (1)

As you can see above, the data is compensated but the display is troublesome. The reason the data is displayed incoherently is because it has yet to be transformed.

Transformation allows the full spread of the data to be visualized, while removing events off the axis. As shown below, when the correct transformation is applied, the data around ‘zero’ on both the Y-axis and X-axis is re-plotted. Now the data is shown WITHOUT being compressed against these axes.

Figure_7 (1)
Figure_7 (1)

Automatic compensation is a flow cytometry best practice. When compensating a 4-color experiment make sure you choose the correct carrier for compensation, collect the data and make sure there is a sufficient number of events, calculate compensation correctly, and apply the compensation values and inspect the results. Failure to properly compensate the data will result in erroneous conclusions which may kill an otherwise promising project. For those who must manually compensate due to their instrument, it’s best to under-compensate the data and controls and then bring them into a third party software to finalize the compensation using the software’s automatic compensation protocols.

To learn more about getting your flow cytometry data published and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

Fickle Markers: Solutions For Antibody Binding Specificity Challenges

Fickle Markers: Solutions For Antibody Binding Specificity Challenges

By: Tim Bushnell, PhD

Reproducibility has been an ongoing, and important, concept in the sciences for years.  In the area of biomedical research, the alarm was sounded by several papers published in the early 2010’s.  Authors like Begley and Ellis, Prinz and coworkers, and Vasilevsky and colleagues, among others reported an alarming trend in the reproducibility of pre-clinical data.  These reports indicated between 50% to almost 90% of published pre-clinical data were not reproducible.  This was further highlighted in the article by Freedman and coworkers, who tried to identify and quantify the different sources of error that could be causing this crisis.  Figure 1,…

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

By: Tim Bushnell, PhD

Numbers are all around us.  My personal favorite is ≅1.618 aka ɸ aka ‘the golden ratio’.  It’s found throughout history, where it has influenced architects and artists. We see it in nature, in plants, and it is used in movies to frame shots. It can be approximated by the Fibonacci sequence (another math favorite of mine). However, I have not worked out how to apply this to flow cytometry.  That doesn’t mean numbers aren’t important in flow cytometry. They are central to everything we do, and in this blog, I’m going to flit around numbers-based questions that I have received…

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

By: Tim Bushnell, PhD

Fluorochrome, antibodies and detectors are important. The journey of a thousand cells starts with a good fluorescent panel. The polychromatic panel is the combination of antibodies and fluorochromes. These will be used during the experiment to answer the biological question of interest. When you only need a few targets, the creation of the panel is relatively straightforward. It’s only when you start to get into more complex panels with multiple fluorochromes that overlap in excitation and emission gets more interesting.  FLUOROCHROMES Both full spectrum and traditional fluorescent flow cytometry rely on measuring the emission of the fluorochromes that are attached…

Flow Cytometry Year in Review: Key Changes To Know

Flow Cytometry Year in Review: Key Changes To Know

By: Meerambika Mishra

Here we are, at the end of an eventful year 2021. But with the promise of a new year 2022 to come. It has been a long year, filled with ups and downs. It is always good to reflect on the past year as we move to the future.  In Memoriam Sir Isaac Newton wrote “If I have seen further, it is by standing upon the shoulders of giants.” In the past year, we have lost some giants of our field including Zbigniew Darzynkiwicz, who contributed much in the areas of cell cycle analysis and apoptosis. Howard Shapiro, known for…

What Star Trek Taught Me About Flow Cytometry

What Star Trek Taught Me About Flow Cytometry

By: Tim Bushnell, PhD

It is no secret that I am a very big fan of the Star Trek franchise. There are many good episodes and lessons explored in the 813+ episodes, 12 movies (and counting). Don’t worry, this blog is not going to review all 813, or even 5 of them. Instead, some of the lessons I have taken away from the show that have applicability to science and flow cytometry.  “Darmok and Jalad at Tanagra.”  (ST:TNG season 5, episode 2) This is probably one of my favorite episodes, which involves Picard and an alien trying to establish a common ground and learn…

5 Flow Cytometry Strategies That Sun Tzu Taught Me

5 Flow Cytometry Strategies That Sun Tzu Taught Me

By: Tim Bushnell, PhD

Sun Tzu was a Chinese general and philosopher. His most famous writing is ‘The Art of War’, and has been studied by generals and CEOs, to glean ideas and strategies to help their missions. I was recently rereading this work and thought to myself if any of Sun Tzu’s lessons could apply to flow cytometry.  So I have identified 5 points that I think lend themselves to thinking about flow cytometry.  “Quickness is the essence of the war.” In flow cytometry, speed is of the essence. The longer the cells are out of their natural environment, the less happy they…

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

By: Meerambika Mishra

Mastering foundational concepts are imperative for successfully using any technique or system.  Robert Heinlein introduced the term ‘Grok’  in his novel Stranger in a Strange Land. Ever since then it has made its way into popular culture. To Grok something is to understand it intuitively, fully. As a cytometrist, there are several key concepts that you must grok to be successful in your career. These foundational concepts are the key tools that we use day in and day out to identify and characterize our cells of interest.  Cells Flow cytometry measures biological processes at the whole cell level. To do…

How To Do Variant Calling From RNASeq NGS Data

How To Do Variant Calling From RNASeq NGS Data

By: Deepak Kumar, PhD

Developing variant calling and analysis pipelines for NGS sequenced data have become a norm in clinical labs. These pipelines include a strategic integration of several tools and techniques to identify molecular and structural variants. That eventually helps in the apt variant annotation and interpretation. This blog will delve into the concepts and intricacies of developing a “variant calling” pipeline using GATK. “Variant calling” can also be performed using tools other than GATK, such as FREEBAYES and SAMTOOLS.  In this blog, I will walk you through variant calling methods on Illumina germline RNASeq data. In the steps, wherever required, I will…

Understanding Clinical Trials And Drug Development As A Research Scientist

Understanding Clinical Trials And Drug Development As A Research Scientist

By: Deepak Kumar, PhD

Clinical trials are studies designed to test the novel methods of diagnosing and treating health conditions – by observing the outcomes of human subjects under experimental conditions.  These are interventional studies that are performed under stringent clinical laboratory settings. Contrariwise, non-interventional studies are performed outside the clinical trial settings that provide researchers an opportunity to monitor the effect of drugs in real-life situations. Non-interventional trials are also termed observational studies as they include post-marketing surveillance studies (PMS) and post-authorization safety studies (PASS). Clinical trials are preferred for testing newly developed drugs since interventional studies are conducted in a highly monitored…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.