4 Spectral Viewers You Should Be Using For Your Flow Cytometry Experiments

At the heart of flow cytometry is the ability to make meaningful measurements of fluorescently tagged cells.

These fluorochromes can be bound to antibodies, a fluorescent protein, a reporter fluorochrome, and the like. Free online spectral viewers are useful in a variety of ways, all of which help improve experimental design and troubleshooting.

These spectral viewers have a special place on every scientist’s browser toolbar. I refer to them regularly, at least weekly.

During the process of panel design, it is useful to have these open to check and compare different fluorochromes. In fact, with recent upgrades to FluoroFinder, there is an integrated spectral viewer based on the filter configuration.

There are a host of different spectral viewers available online. Each one has its strengths and provides specific information. This often necessitates having to use two or three of them to get the information you want. These are the spectral links I use (in alphabetical order):

  1. AffymetrixFluorPlan Spectra Viewer
  2. BD Bioscience Spectrum Viewer
  3. Biolegend Spectra Analyzer
  4. ThermoFisher Fluorescence SpectraViewer

All the spectral viewers listed have several common and important features. These all allow the investigator to specify the laser excitation lines, the filter configurations and the fluorochromes. The one caveat with fluorochrome choice revolves around proprietary spectra and some will only be available with specific vendors.

The spectral viewers also output similar information, as illustrated below. This information can include how much of a given excitation curve is found in a given filter, the percentage of maximal emission, and more.

What Is A Spectral Viewer And Why You Should Use It

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

One of the primary benefits of spectral viewers is that they are useful in learning more about fluorochromes. For example, the popular tandem dye PerCP-CY5.5.  

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

This shows the excitation at 488 nm, and the nice emission. The BD Bioscience Spectrum Viewer gives you a nice additional feature–the %Max excitation, in this case it’s 98.4%. The excitation curve (shown in dashed blue) ends at about 450 nm. So, how can the spectral viewer help us explain the following data?

In this experiment, the beads were stained with either PerCP-Cy5.5 or Qdot705 and measured with either blue laser excitation (Blue B 710/50) or violet laser excitation (Violet B 710/50). As you can see from the graph, it’s clear that there is significant PerCP-Cy5.5 signal in the Violet B channel (Blue line).

Where is this signal coming from?

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

Seeing that the PerCP-Cy5.5 excitation profile ends, the following figure shows the excitation profile from PerCP.  Our answer is revealed in the full excitation spectrum.

PerCP, it turns out, can be excited by a 405 nm laser, at about 27% efficiency. Coupled to an efficient transfer to the Cy5.5 acceptor on the tandem, it explains why we see this signal in the violet laser.

This is significant if you were going to be using those two dyes in a polychromatic panel.

How To Evaluate New Fluorochromes On The Market

The Brilliant Violet™ dyes, produced by Sirigen, have been a boon to users of the violet laser. These dyes are extremely bright and have become very popular. The Brilliant Violet™ series of dyes include both polymer dyes (BV421™ and BV510™), and tandem dyes with the polymer core (BV570, BV605™, BV650™, BV711™, BV785™). While they may not be named as tandems, they may have some issues that the spectral viewer can reveal.

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

Here is the spectrum of BV605™…

Notice that there is a second excitation (here shown in the green 561 nm line). This excitation means that this tandem may have issues affecting the spillover of this dye into a PE and PE-Texas Red®-like channel.

Anytime a new fluorochrome comes out, it’s good to learn about it using these spectral viewers.  The Biolegend Spectra Analyzer is quick and easy to use, and they even have an app for the program, so you can go mobile with it. This is useful when you’re reviewing data with someone and don’t want to access your traditional computer browser.

How To Identify Areas Of Spectral Spillover

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

Another powerful use of the spectral viewers is to understand what channels on an instrument a given fluorochrome will spill into. The following example is using Alexa Fluor® 488, with three instrument filters placed on the graph.

With the ThermoFisher Fluorescence SpectraViewer, if you hover over the filter, it will report the percentage of the curve that is contained within that filter. In this case, the 530/30 bandpass filter captures about 49% of the curve.

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

About 12% of the Alexa Fluor® 488 fluorescence is captured with the 585/42 filter, and about 1% with the 630/20 filter.

It is important to note that this is not the amount of compensation that needs to be applied, just the amount of the curve that is present in the filter.

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

Here is an example of another use for these spectral viewers, courtesy of the AffymetrixFluorPlan Spectra Viewer. In the results tab, it shows in table form the percentage of a given fluorochrome’s emission curve found in the filter in question.  Looking at this figure, with the PE and PE-Cy7 curves plotted, what can be said about the PE-Cy7 fluorochrome?

It turns out that the FRET between the PE emission and the Cy7 excitation is not optimal.

How To Optimize Flow Cytometry Filters

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

Another great use of the spectral viewers is to optimize the filters for a given fluorochrome on a specific instrument. Take for example, the following data. A researcher noticed some sensitivity issues off of two detectors when an instrument was installed. Beads were stained with FITC (488 nm excitation) and QDot545 (405 nm excitation) and run on the instrument. The data looked like this:

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

When the 532 nm laser was on, it was clear that the dim signals were shifted to the right. The instrument came with the vendor supplied filters. In modeling this issue, putting these two filters in, along with the laser lines, we see the following:

Notice that the 532 nm laser line was directly in the middle of these two filters. The cause of the loss of resolution was a result of the scatter from cells as they pass through the 532 nm laser. A fraction of this scatter wound up in the fibers leading to the blue and violet detectors.

The lesson learned from this was to always model your filters before ordering an instrument.  A tweak of the filter solved this problem, and the experiments continued.

What Is The FluoroFinder Spectral Viewer?

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

Recently, FluoroFinder released a new version of their panel design package.  As part of that package, when the cursor hovers over a given fluorochrome, the system will provide the researcher information based on the instrument configuration and filters on the machine. This is shown below.

This is an excellent resource when designing polychromatic panels. It is nice to get a view of the spectra of the fluorochrome choices on the instrument being used and quickly get a feel for how well a given filter/detector combination will capture the photons emitted from the fluorochrome. It also helps to see what other channels might be affected by the fluorochrome choice.

fluorescence spectrum analyzer | Expert Cytometry | fluorescence spectra viewer

For example, on this instrument, there are several possible filters that can be used for QDOT565. Based on the filter configuration and emission profile of the fluorochrome, this emission may impact three other detectors. For that reason, it may be better to choose a different fluorochrome. This addition to FluoroFinder is a great feature to help make those critical fluorochrome choices during the design process.

Fluorochrome emission is the lifeblood of flow cytometry. The use of in silico tools can save a lot of effort and missed opportunity by allowing for the modeling of excitation and emission profiles in the context of what filters a given instrument is equipped with. Using these tools, it is easy to identify where a new fluorochrome will be measured on an instrument, where a fluorochrome may cause issues with other fluorochromes, and what filters are best for detection. These tools can save a lot of troubleshooting at the beginning of an experiment, and also help understand when issues do pop up. Bookmark them and use them at every opportunity.

To learn more about spectral viewers and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

3 Must-Have High-Dimensional Flow Cytometry Controls

3 Must-Have High-Dimensional Flow Cytometry Controls

By: Tim Bushnell, PhD

Developments such as the recent upgrade to the Cytobank analysis platform and the creation of new packages such as Immunocluster are reducing the computational expertise needed to work with high-dimensional flow cytometry datasets. Whether you are a researcher in academia, industry, or government, you may want to take advantage of the reduced barrier to entry to apply high-dimensional flow cytometry in your work. However, you’ll need the right experimental design to access the new transformative insights available through these approaches and avoid wasting the considerable time and money required for performing them. As with all experiments, a good design begins…

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

By: Tim Bushnell, PhD

Fluorochrome, antibodies and detectors are important. The journey of a thousand cells starts with a good fluorescent panel. The polychromatic panel is the combination of antibodies and fluorochromes. These will be used during the experiment to answer the biological question of interest. When you only need a few targets, the creation of the panel is relatively straightforward. It’s only when you start to get into more complex panels with multiple fluorochromes that overlap in excitation and emission gets more interesting.  FLUOROCHROMES Both full spectrum and traditional fluorescent flow cytometry rely on measuring the emission of the fluorochromes that are attached…

Flow Cytometry Year in Review: Key Changes To Know

Flow Cytometry Year in Review: Key Changes To Know

By: Meerambika Mishra

Here we are, at the end of an eventful year 2021. But with the promise of a new year 2022 to come. It has been a long year, filled with ups and downs. It is always good to reflect on the past year as we move to the future.  In Memoriam Sir Isaac Newton wrote “If I have seen further, it is by standing upon the shoulders of giants.” In the past year, we have lost some giants of our field including Zbigniew Darzynkiwicz, who contributed much in the areas of cell cycle analysis and apoptosis. Howard Shapiro, known for…

What Star Trek Taught Me About Flow Cytometry

What Star Trek Taught Me About Flow Cytometry

By: Tim Bushnell, PhD

It is no secret that I am a very big fan of the Star Trek franchise. There are many good episodes and lessons explored in the 813+ episodes, 12 movies (and counting). Don’t worry, this blog is not going to review all 813, or even 5 of them. Instead, some of the lessons I have taken away from the show that have applicability to science and flow cytometry.  “Darmok and Jalad at Tanagra.”  (ST:TNG season 5, episode 2) This is probably one of my favorite episodes, which involves Picard and an alien trying to establish a common ground and learn…

5 Flow Cytometry Strategies That Sun Tzu Taught Me

5 Flow Cytometry Strategies That Sun Tzu Taught Me

By: Tim Bushnell, PhD

Sun Tzu was a Chinese general and philosopher. His most famous writing is ‘The Art of War’, and has been studied by generals and CEOs, to glean ideas and strategies to help their missions. I was recently rereading this work and thought to myself if any of Sun Tzu’s lessons could apply to flow cytometry.  So I have identified 5 points that I think lend themselves to thinking about flow cytometry.  “Quickness is the essence of the war.” In flow cytometry, speed is of the essence. The longer the cells are out of their natural environment, the less happy they…

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

By: Meerambika Mishra

Mastering foundational concepts are imperative for successfully using any technique or system.  Robert Heinlein introduced the term ‘Grok’  in his novel Stranger in a Strange Land. Ever since then it has made its way into popular culture. To Grok something is to understand it intuitively, fully. As a cytometrist, there are several key concepts that you must grok to be successful in your career. These foundational concepts are the key tools that we use day in and day out to identify and characterize our cells of interest.  Cells Flow cytometry measures biological processes at the whole cell level. To do…

Which Fluorophores To Use For Your Microscopy Experiment

Which Fluorophores To Use For Your Microscopy Experiment

By: Heather Brown-Harding, PhD

Fluorophore selection is important. I have often been asked by my facility users which fluorophore is best suited for their experiments. The answer to this is mostly dependent on whether they are using a widefield microscope with set excitation/emission cubes or a laser based system that lets you select the laser and the emission window. Once you have narrowed down which fluorophores you can excite and collect the correct emission, you can further refine the specific fluorophore that is best for your experiment.  In this blog  we will discuss how to determine what can work with your microscope, and how…

4 No Cost Ways To Improve Your Microscopy Image Quality

4 No Cost Ways To Improve Your Microscopy Image Quality

By: Heather Brown-Harding, PhD

Image quality is critical for accurate and reproducible data. Many people get stuck on the magnification of the objective or on using a confocal instead of a widefield microscope. There are several other factors that affect the image quality such as the numerical aperture of the objective, the signal-to-noise ratio of the system, or the brightness of the sample.  Numerical aperture is the ability of an objective to collect light from a sample, but it contributes to two key formulas that will affect your image quality. The first is the theoretical resolution of the objective. It is expressed with the…

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

By: Heather Brown-Harding, PhD

TIRF is not as common as other microscopy based techniques due to certain restrictions. We will discuss these restrictions, then analyze why it might be perfect for your experiment.  TIRF relies on an evanescent wave, created through a critical angle of coherent light (i.e. laser) that reaches a refractive index mismatch.  What does it mean in practice?  A high angle laser reflects off the interface of the coverslip and the sample. Although the depth that this wave penetrates is dependent on the wavelength of the light, in practice it is approximately 50-300nm from the coverslip. Therefore, the cell membrane is…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.