Why Understanding The Jablonski Diagram Will Help You Publish Your Flow Cytometry Data

We are all used to interruptions during our working day, from the ping of an email notification to the knock of a fellow researcher who wants to troubleshoot their experiment.

Fortunately, most of these interruptions only last a few minutes. Some past researchers were not so lucky.

Imagine your work being interrupted by a war. Imagine it being interrupted by two wars that you had to fight in.

Alexander Jablonski often had his studies interrupted, not by emails or colleagues, but by war. Jablonski’s work was held up for years due to military service in two wars. First, he served in the war for Polish independence in 1916, then he served again in the Polish-Bolshevik war in 1920.

In 1930, after the wars were over, Jablonski earned his doctorate. His dissertation, entitled “On the influence of the change of wavelengths of excitation light on the fluorescence spectra” laid the foundation for the rest of his career in physics.

A few years later, in 1935, he created what we flow cytometrists call the Jablonski Diagram.

jablonski diagram explanation | Expert Cytometry | jablonski diagram fluorescence

The Jablonski Diagram Explained 

Flow cytometrists use the Jablonski diagram to aid in understanding and explaining the kinetic events of fluorescence.

Fluorescent compounds start at the ground state (S0) until they are excited by interacting with a photon of light (Step 1). This photon excites the compound, promoting an electon to a higher energy state (S1’).

As shown in Step 2, some of this energy is lost by emission of heat and other non-radiative processes, leading to the S1 state.

The final step in the process (Step 3) shows an electron falling back to the ground state while releasing a photon of light. This photon has a lower energy (higher wavelength) than the exciting photon of light.

3 Practical Takeaways From The Jablonski Diagram 

During a flow cytometry experiment, we capture this photon using a photo-multipler tube (PMT).

With knowledge of the filters in front of that PMT, we can assign the signal to a specific fluorochrome in our panel, leading to the identification of the cell of interest.

The Jablonski diagram helps researchers understand several critical factors about the physics of fluorescence, which is critical to designing higher quality experiments and collecting higher quality data that has a better chance of being published.

Here are 3 practical takeaways from the Jablonski diagram…

1. Quantum Yield Helps Determine “Brightness” 

Looking at the Jablonski diagram, you can see that some energy is lost without generating light. In other words, not all of the photons absorbed are released again and therefore will not be measured by your flow cytometer or cell sorter.

The difference between the number of photons absorbed versus the number of photons released for the instrument’s detectors to pick up is called the quantum yield. 

This yield, in part, is what makes some of your fluorochromes “bright” and therefore best used for dim cell markers, or “not-so-bright” and thus better suited for highly expressed cell surface markers.

For example, Phycoerythrin (PE) has a quantum yield of 0.84, meaning that for every 100 photons absorbed, 84 are released just a few femtoseconds later at a longer wavelength. In this case, it’s easy to see why PE is a favorite fluorochrome for use with low-expression markers in multicolor panels.

Everything else being equal, a marker stained with PE will be seen as brighter than one stained with a lower quantum yield dye, such as Cy3, which has a quantum yield of 0.15. 

But, of course, everything else is not equal. Cy3 is in fact excited by a different range of light than PE and in some conditions will absorb more photons than other dyes on the same laser line.

2. The Extinction Coefficient Helps Determine Fluorescence Intensity

Quantum yield is not everything in terms of the brightness of a fluorochrome.

Output is also a component of input. A compound that can absorb more energy at a particular wavelength than another dye, can still be “brighter” and therefore more easily detected by a flow cytometer. This is true even if the compound has a lower quantum yield than the other dye.

Fluorescence intensity at a given wavelength is thought to be proportional to the product of quantum yield and extinction coefficient. 

Compared to fluorescein, with an extinction coefficient of approximately 80,000 cm-1M-1, PE and other phycobiliproteins have very large extinction coefficients, some on the order of 2.4 million cm-1M-1. These large extinction coefficients and high quantum yield values make phycobiliproteins very attractive fluorochromes.

Quantum dots also have very high extinction coefficients (~2×106 cm-1M-1), though they utilize light sources in the violet range and below.

3. The Stokes’ Shift Allows The Use Of All Available Excitation Sources. 

To efficiently use all available excitation sources, flow cytometrists have learned to place multiple dyes on the same laser line. However, this is only possible because of a key characteristic of the Jablonski diagram, the Stokes’ shift.

The Stokes’ shift is routinely visualized in excitation and emission spectra diagrams, such as the diagram below from Life Technologies. This shift is the difference in energy and wavelength represented by (hνEX – hνEM) in the Jablonski diagram.

As the diagram shows, the Stokes’ shift, in concert with your flow cytometer’s optical filters, allows you to separate distinct signals for 4 different fluorochromes using the 488nm blue laser line.

fluorescence jablonski diagram | Expert Cytometry | jablonski diagram in photochemistry

The Jablonski diagram is simple in nature, but powerful in terms of its practical takeaways. Understanding the various characteristics of the diagram, including the quantum yield, extinction coefficient, and Stokes’ shift, will help you design better flow cytometry experiments. Consider these three characteristics when determining your fluorescent dyes and markers for your next experiment. By understanding the fundamentals of fluorescence that Alexander Jablonski laid out after warring many years ago, you’ll increase the quality of your flow cytometry data.

To learn more about key flow cytometry processes and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

5-Point Guide To Buying A New Microscope For Your Lab

5-Point Guide To Buying A New Microscope For Your Lab

By: Heather Brown-Harding, PhD

Have you ever noticed how painful it can be to purchase a new microscope? It would be hard to miss – this can be a frustrating process. A lot of scientists and students consider the new microscope hunt quite scary for a variety of reasons. It might be that you’re worried you won’t get the right microscope and that you’ll regret it, or you may find that dealing with salespeople, in general, makes you kind of uncomfortable. But remember, salespeople are just human beings like you and me, and if we can treat them as such, the whole process of…

Ask These 7 Questions Before Purchasing A Flow Cytometer

Ask These 7 Questions Before Purchasing A Flow Cytometer

By: Tim Bushnell, PhD

I am still convinced that my first cell sorter was possessed. The number of issues that I had with the system remains hard for me to believe, even after all these years. It had been purchased, in part, from one vendor because the sales rep for a competitor was nowhere to be found. At that time, I admit I wasn’t overly diligent in my research process. Since then, I’ve pinpointed some critical questions that need to be answered before purchasing a new instrument. At the end of the process, a shiny new instrument will arrive at your facility. Make sure…

6 Areas Of Consideration For Flow Cytometry Cell Cycle Analysis

6 Areas Of Consideration For Flow Cytometry Cell Cycle Analysis

By: Tim Bushnell, PhD

Cell cycle seems like such a straightforward assay. At its heart, it is a one-color assay and should be a simple protocol to follow. However, as discussed before, fixation and dye concentrations are critical. Once those are optimized, it becomes important to run the cells low and slow in order to get the best quality histograms for analysis — the topic of another blog. Adding the critical CEN and TEN controls will help standardize the assay, and ensure consistency and reproducibility between runs while helping identify non-standard (aneuploid, polyploid) populations from normal ploidy. Trying to isolate and focus on specific…

Why Cell Cycle Analysis Details Are Critical In Flow Cytometry

Why Cell Cycle Analysis Details Are Critical In Flow Cytometry

By: Tim Bushnell, PhD

Cell cycle analysis appears to be deceptively easy in concept, but details are absolutely critical. It is not possible to hide the data if there is poor sample preparation, incorrect dye ratios, too much (or too little) staining time, etc. Forgetting RNAse when using PI will doom your data to failure. Take these basics into account as you move into performing this simple, yet amazingly informative assay.

Instrument Quality Control For Reproducible Flow Cytometry Experiments

Instrument Quality Control For Reproducible Flow Cytometry Experiments

By: Tim Bushnell, PhD

The flow cytometer is an integral component of any flow cytometry experiment, and special attention should be paid to ensuring that it is working correctly and consistently. As an end-user, the researcher should be able to sit down at a machine and know that it is performing the same way today as it was yesterday and last week. Equally important is that if any changes in instrument performance have occured, the end-user knows how they have been addressed and corrected, rather than letting them fester and potentially affect the results. Quality control measurements can include a variety of targets, such…

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

By: Tim Bushnell, PhD

Preparing for rare event analysis requires an understanding of the power and limitation of the instrument to be used. From how fast to run the fluidics, to how the signal is processed to the number of gates that can be used in the sorting experiment, each factor impacts the outcome of the experiment.

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

How To Choose The Correct Antibody For Accurate Flow Cytometry Results

By: Tim Bushnell, PhD

With the added emphasis on reproducibility, it is critical to look at every step where experiments can be improved. No single step makes an experiment more reproducible, rather it is a process, making changes at each stage that leads to reproducibility. Antibodies comprise a critical component that needs to be reviewed. As Bradbury et al. in a commentary in Nature pointed out, the global spending on antibodies is about $1.6 billion a year, and it is estimated about half of that money is spent on “bad” antibodies. This does not include the additional costs of wasted time and effort by…

5 Essential Beads For Flow Cytometry Experiments

5 Essential Beads For Flow Cytometry Experiments

By: Tim Bushnell, PhD

Flow cytometry is designed to measure physical and biochemical characteristics of cells and cell-like particles using fluorescence. Fundamentally, any single-particle suspension (within a defined size range) can pass through the flow cytometer. Beads, for better or worse, are a sine qua non for the flow cytometrist. From quality control,to standardization, to compensation, there is a bead for every job. They are important — critical, even — for flow cytometry.

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.