How To Achieve Accurate Flow Cytometry Calcium Flux Measurements

Most flow cytometry experiments work with antibodies conjugated to a fluorochrome for some variation on immunophenotyping. However, any fluorochrome that is excited by one of the available excitation sources, and emits within the range of the detectors, can be incorporated into an experiment.

One of the great pleasures of the past was leafing through the Molecular Probes handbook, seeing what fluorescent dyes had just been released, and thinking of possible applications for them. The classic example of non-antibody directed fluorochromes are DNA-binding dyes like PI, 7-AAD, and Hoechst, but there are many others.

Dyes exist for the detection of everything from large nucleic acids to reactive oxygen species, and from lipid aggregates to small ions. Concentrations of physiologically important ions such as sodium, potassium, and calcium can be important indicators of health and disease.

Calcium ions play an especially critical role in cellular signaling. As a signaling messenger, calcium is involved in everything from muscle contractions, to cell motility, to enzyme activity.

Cells tightly regulate calcium to ensure that the cytoplasmic concentration of Ca2+ is in the 100 nM range.

Mechanisms of calcium homeostasis include sequestering Ca2+ in different organelles and proteins, as well as actively secreting excess calcium from the cell.

Clearly, a probe to monitor calcium dynamics in real time would be valuable.

Fortunately, there are several different fluorochromes available for measuring changes in calcium levels (flux) by flow cytometry. A complete list can be found here.

The first Ca2+-responsive fluorochromes were published by Tsien in 1980 and, as described in the Molecular Probes Handbook, were later improved by Haugland.

Modern flow cytometrists have 2 classes of dyes available to them: those that respond to an increase in calcium, and those that respond differently to both free calcium and a lack of calcium (ratiometric).

When preparing for a calcium flux experiment, there are a couple of things that need to be considered for designing the experiment.

  1. What excitation sources are available for use? Most of the common calcium-sensing fluorochromes are excited off a 355 nm, 405 nm, or 488 nm laser. If the plan is to couple the calcium flux assay to immunophenotyping in an effort to see which cells are responding to a given stimulus, choosing a calcium-sensing dye is an important decision.With the increased presence of UV lasers on systems (due in part to the brilliant UV dyes), the use of UV-excitable Indo-1 is a great choice, allowing for phenotyping off of other lasers.
  2. Sensing or Ratiometric Calcium dye? The advantage of using a ratiometric dye — a dye whose excitation or emission peak changes in the presence of calcium — is strongly recommended. This ensures that the dye loading step of the assay is less critical than for the dyes that only respond to the presence of calcium.
  3. Temperature control? How critical is it to have biologically relevant temperatures for the response? Although cells will flux at room temperature, the kinetics are different at 37 ℃. There are several ways to achieve temperature control for flow samples. Necessity is the mother of invention, and using tools common to fans of the TV show MacGyver, it is pretty easy to create your own temperature control system using an aquarium submersible pump, an old water bath, some plastic tubing, and waterproof tape.Take a 5 ml tube that fits on your flow cytometer, wrap 4-6 coils around it, and secure them with tape very tightly. The goal is to make a jacket for the tube.Next, connect the tubing to the pump, and place in the water bath. The final step is to calibrate the system: put your sample solution in the tube, and add a thermometer. Set the water bath to a couple of degrees above desired temperature in the tube, and monitor it.Make sure you have a stack of paper towels or absorbent benchpads handy, as leaks could spring at any moment!
  4. Capturing initial Ca2+ response? On most flow cytometers, you have to take the sample tube off to add the stimulus. This means that the earliest Ca2+ response is missed. That is why there is usually a break in the data right after the unstimulated baseline.With the advent of more syringe- and peristaltic pump-based systems, this may become a moot issue for future experiments.

Calcium Responsive Probes

The first class of Ca2+ probes are those that increase fluorescence in the presence of free calcium.

Two of the prototypical dyes are shown below, in Figure 1. Fluo-3 and Fluo-4 are both excited by 488 nm light, and fluoresce in the low 500 nm range. Based on data from the Molecular Probes Handbook, Fluo-4 has a better response, compared to Fluo-3, in a FLIPR readout. The original paper describing Fluo-4 also indicated that it performed better than Fluo-3. As with everything in flow cytometry, make sure to test the reagents that will be used in the assay.

Figure 1: Fluorescence spectra of Fluo-3 and Fluo-4.

There are several additional probes that can be used in this mode.

To use these, cells are first loaded with a membrane-permeant version of the dye, which is then cleaved by esterases to release a charged version that remains trapped in the cell.

Dye titration should be performed to optimize loading conditions for each cell type.

For difficult-to-load samples, addition of 0.01-0.02% Pluronic acid has been shown to facilitate dye loading. It is critical to keep cell concentrations consistent from run to run.

Single response dyes are easy to use and require only lasers that are available on pretty much every instrument in the field. Unfortunately, different levels of loading will often result in different responses.

The second class of Ca2+ probes are the ratiometric dyes.

The most commonly used ratiometric dye is Indo-1. It is excited by the UV laser and shifts its emission spectrum when it is bound to calcium (Figure 2). By evaluating the ratio of free to bound, a more accurate and loading-independent kinetic reaction can be measured.

Figure 2 : Excitation and Emission profile for Indo-1.

For those instruments that don’t have a UV laser, it is possible to Fura-Red as a ratiometric dye. In the absence of Ca++, the dye would be best excited by the 488 nm laser. In the presence of Ca++ the best excitation would be off the 405 nm laser (Figure 3). Thus, the ratio of the emission off the 405 nm laser divided by the emission off the 488 nm laser will provide a ratiometric response similar to Indo-1.

Figure 3: Excitation and Emission profile for Fura-Red

Running a Calcium Flux Experiment

Gather the cells and label with the dye of choice. Keep the unused cells in the dark at RT while conducting a flux. Make sure that the stimulation reagents are ready and that a pipet is dialed in to deliver the correct amount of stimulant to the cells.

Another reagent to have on hand is a calcium ionophore. The 2 most common compounds used are ionomycin and A23187.

When added to cells, the ionophore will shuttle calcium ions across the plasma membrane to cause the maximal response in the cells.

While some protocols will have the ionophore control run on a separate tube, it is often better to add ionomycin at the end of the acquisition to get a measurement of the maximal fluorescence of the cells. You then have data for baseline, stimulated, and maximal calcium response for each tube.

With early instruments for ratiometric measurements, it was necessary to collect the data, trying to balance the 2 emissions. With newer instruments, a ratio can be set up and collected at the time of data acquisition.

This is achieved by making sure the signal from both dyes is on-scale and, having a histogram plot — or better yet, a plot of ratio vs time — and making sure that the ratio of the dyes is in a reasonable place (somewhere along 1000) as shown in Figure 4. And yes, you do run calcium flux in linear scale.

A typical analysis is shown in Figure 4 from Graf et al. (2007). In this experiment, the authors used Indo-1 to examine calcium flux in T-cells that had formed conjugates with wild type (red) or mutant (blue) antigen-presenting cells.

There is an initial baseline to establish the fluorescence level. The first arrow indicates where the conjugates were formed, which causes a break in the data.

The red line shows an increase in calcium flux, indicating that the wild-type APCs induce a calcium flux in the T-cells. The blue line doesn’t change, demonstrating that the mutant APCs are not capable of inducing a calcium flux. The green line, representing unbound T-cells, do not flux calcium either.

At the second arrow, a little over 10 minutes from the start of the experiment, the authors added Ionomycin. This causes an influx of calcium into the cells and, as can be seen, all of the T-cells showed a positive calcium response.

Figure 4: Figure 6c from Graf et al. (2007), showing the typical analysis of a calcium flux experiment.

Notice how the authors cleaned up the data by plotting the median fluorescent intensity at each time point. Additionally, the data is smoothed, which helps reduce noise. There are several common methods for smoothing data.

The first method is a moving average. In this process, at time point t, the mean of n to n+25 is calculated. At t+1, the average of the next N data points (n+1 to n+26) is calculated, and so on. The moving average value can be chosen based on the experimental needs.

A second method is to use a Gaussian smoothing, which places less weight on values farther away from the center. The choice is up to the investigator.

This graph shows the one limitation on traditional analysis, and that is the break that prevents the detection of the earliest calcium flux. There used to be a system, called the Time Zero System, sold by Cytek that was able to get better measurements of the initial calcium flux.

With the advent of newer syringe-driven systems, there became another option, as demonstrated in Vines et al (2010).

Using the Accuri C6, which has a pump system, the sample tube is not under pressure so it is possible to add stimuli directly while continuing to acquire data. Figure 5 below, taken from Figure 2 from the Vines paper, shows how this data looks on the Accuri and a Cyan.

Figure 5: Figure 2 from Vines et al (2010), showing how having the ability to add stimuli without removing the tube from the sip allows for the earliest calcium flux to be captured.

In this paper, the authors were limited to using Fluo-4, so the data could not be acquired in a ratiometric manner. With the improvements on the newer cytometers, it should be possible to perform similar experiments and capture this early response using a ratiometric measurement.

To summarize:

  • Start with identifying the instrument to be used, which will dictate what fluorochromes can be used.
  • Use a ratiometric dye whenever possible, because this allows the data to be acquired without concerns over dye loading differences.
  • Make to sure have a reagent, like ionomycin, to determine the maximal fluorescent signal.
  • Choose an appropriate smoothing model.
  • Decide how best to present data (graphically, fold over control, etc.).

Calcium experiments can be very informative and, with the advent of cheaper UV lasers, more and more researchers can use ratiometric measurements to evaluate the signaling processes in phenotypically defined populations.

To learn more about How To Achieve Accurate Flow Cytometry Calcium Flux Measurements, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

How To Extract Cells From Tissues Using Laser Capture Microscopy

How To Extract Cells From Tissues Using Laser Capture Microscopy

By: Tim Bushnell, PhD

Extracting specific cells still remains an important aspect of several emerging genomic techniques. Prior knowledge about the input cells helps to put the downstream results in context. The most common isolation technique is cell sorting, but it requires a single cell suspension and eliminates any spatial information about the microenvironment. Spatial transcriptomics is an emerging technique that can address some of these issues, but that is a topic for another blog.  So what does a researcher who needs to isolate a specific type of cell do? The answer lies in the technique of laser capture microdissection (LCM). Developed at the National…

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

By: Tim Bushnell, PhD

Incorporating quality control as a part of the optimization process in  your flow cytometry protocol is important. Take a step back and consider how to build quality control tracking into the experimental protocol.  When researchers hear about quality control, they immediately shift their attention to those operating and maintaining the instrument, as if the whole weight of QC should fall on their shoulders.   It is true that core facilities work hard to provide high-quality instruments and monitor performance over time so that the researchers can enjoy uniformity in their experiments. That, however, is just one level of QC.  As the experimental…

Understanding Clinical Trials And Drug Development As A Research Scientist

Understanding Clinical Trials And Drug Development As A Research Scientist

By: Deepak Kumar, PhD

Clinical trials are studies designed to test the novel methods of diagnosing and treating health conditions – by observing the outcomes of human subjects under experimental conditions.  These are interventional studies that are performed under stringent clinical laboratory settings. Contrariwise, non-interventional studies are performed outside the clinical trial settings that provide researchers an opportunity to monitor the effect of drugs in real-life situations. Non-interventional trials are also termed observational studies as they include post-marketing surveillance studies (PMS) and post-authorization safety studies (PASS). Clinical trials are preferred for testing newly developed drugs since interventional studies are conducted in a highly monitored…

How To Optimize Instrument Voltage For Flow Cytometry Experiments  (Part 3 Of 6)

How To Optimize Instrument Voltage For Flow Cytometry Experiments (Part 3 Of 6)

By: Tim Bushnell, PhD

As we continue to explore the steps involved in optimizing a flow cytometry experiment, we turn our attention to the detectors and optimizing sensitivity: instrument voltage optimization.  This is important as we want to ensure that we can make as sensitive a measurement as possible.  This requires us to know the optimal sensitivity of our instrument, and how our stained cells are resolved based on that voltage.  Let’s start by asking the question what makes a good voltage?  Joe Trotter, from the BD Biosciences Advanced Technology Group, once suggested the following:  Electronic noise effects resolution sensitivity   A good minimal PMT…

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

By: Deepak Kumar, PhD

In the first blog of this series, we explored the power of sequencing the genome at various levels. We also dealt with how the characterization of the RNA expression levels helps us to understand the changes at the genome level. These changes impact the downstream expression of the target genes. In this blog, we will explore how NGS sequencing can help us comprehend DNA modification that affect the expression pattern of the given genes (epigenetic profiling) as well as characterizing the DNA-protein interactions that allow for the identification of genes that may be regulated by a given protein.  DNA Methylation Profiling…

How To Profile DNA And RNA Expression Using Next Generation Sequencing

How To Profile DNA And RNA Expression Using Next Generation Sequencing

By: Deepak Kumar, PhD

Why is Next Generation Sequencing so powerful to explore and answer both clinical and research questions. With the ability to sequence whole genomes, identifying novel changes between individuals, to exploring what RNA sequences are being expressed, or to examine DNA modifications and protein-DNA interactions occurring that can help researchers better understand the complex regulation of transcription. This, in turn, allows them to characterize changes during different disease states, which can suggest a way to treat said disease.  Over the next two blogs, I will highlight these different methods along with illustrating how these can help clinical diagnostics as well as…

Optimizing Flow Cytometry Experiments - Part 2         How To Block Samples (Sample Blocking)

Optimizing Flow Cytometry Experiments - Part 2 How To Block Samples (Sample Blocking)

By: Tim Bushnell, PhD

In my previous blog on  experimental optimization, we discussed the idea of identifying the best antibody concentration for staining the cells. We did this through a process called titration, which  focuses on finding the best signal-to-noise ratio at the lowest antibody concentration. In this blog we will deal with sample blocking As a reminder, there are two other major binding concerns with antibodies. The first is the specific binding of the Fc fragment of the antibody to the Fc Receptor expressed on some cells. This protein is critical for the process of destroying microbes or other cells that have been…

What Is Next Generation Sequencing (NGS) And How Is It Used In Drug Development

What Is Next Generation Sequencing (NGS) And How Is It Used In Drug Development

By: Deepak Kumar, PhD

NGS methodologies have been used to produce high-throughput sequence data. These data with appropriate computational analyses facilitate variant identification and prove to be extremely valuable in pharmaceutical industries and clinical practice for developing drug molecules inhibiting disease progression. Thus, by providing a comprehensive profile of an individual’s variome — particularly that of clinical relevance consisting of pathogenic variants — NGS helps in determining new disease genes. The information thus obtained on genetic variations and the target disease genes can be used by the Pharma companies to develop drugs impeding these variants and their disease-causing effect. However simple this may allude…

How To Determine The Optimal Antibody Concentration For Your Flow Cytometry Experiment (Part 1 of 6)

How To Determine The Optimal Antibody Concentration For Your Flow Cytometry Experiment (Part 1 of 6)

By: Tim Bushnell, PhD

Over the next series of blog posts, we will explore the different aspects of optimizing a polychromatic flow cytometry panel. These steps range from figuring out the best voltage to use, which controls are critical for data interpretation, what quality control tools can be integrated into the assay; how to block cells, and more. This blog will focus on determining the optimal antibody concentration.  As a reminder about the antibody structure, a schematic of an antibody is shown below.  Figure 1: Schematic of an antibody. Figure from Wikipedia. The antibody is composed of two heavy chains and two light chains that…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.