3 Flow Cytometry Gates That Will Improve The Accuracy Of Your FACS Data Analysis

Flow cytometry data analysis typically involves a step where a series of gates are defined to identify the population of interest.

The development of robust gating strategies, and the communication of these strategies can be complex. Figures in papers often only tell part of the story. In the world of multicenter studies and the need for improved reproducibility, understanding the specifics of each gating strategy is critical.

As Maecker et al., pointed out in this article, the coefficient of variation due to data analysis went from 20.5% when performed at individual labs, to 4% when performed centrally. With the development of the FlowRepository, investigators can now get access to deposited data and walk through a published analysis with the raw data. This resource will continue to improve the ability to share and communicate the often complex gating strategies.

When training new users on data analysis, there are several different best practices and gating strategies you should incorporate into your analysis. There are also several misconceptions you must understand. For example, too many researchers are reliant on a simple Forward Scatter (FSC) by Side Scatter (SSC) gate to start their analyses.

In general, this basic gate is only good for high-level data reduction, as in removing debris that is on the lower edge of the axis, not for defining your entire starting population. Instead, you should rely on an antibody targeted to a specific cell type (such as CD45 if your goal is to gate on lymphocytes) as your “starting” gate, rather than define your cells based on an FSC x SSC gate alone. This will lead to a more accurate statistical analysis and better conclusions overall.

3 Flow Cytometry Gates You Should Be Using

There are 3 gates that many researchers are not using but should be using when analyzing their flow cytometry data.

These gates are critical for good data analysis. They will help remove many confounding events that may be clouding your analysis, especially where rare events are concerned.

1. The ‘Singles’ Gate.

Proper flow cytometry data analysis requires single cells. Clumps of cells, except in very special assays, can cause major problems downstream. Likewise, coincident events (two cells passing by the intercept so fast that the pulse cannot be separated) can confound your analysis. As a result, many different ways of removing coincident events that represent cell clumps have been developed.

First, it’s important to visualize and understand the shape of the electronic pulse that comes off your flow cytometer’s detector.

Figure_1

As the above graph shows, the pulse is composed of three components—a pulse height (-H), a pulse width (-W) and the integral of the height and the width known as the pulse area (-A). With digital flow cytometers, the pulse area is typically used to measure and report fluorescence.  This is because pulse area is a more accurate measure of the fluorescence on the cells.

But what happens to this pulse when two cells either stick together or pass through the intercept point too closely?

Figure_2

Here, it’s clear that two things have changed—the pulse area and the pulse width. As the above graph shows, both the pulse area and the pulse width became larger compared to the single cells. You can take advantage of this change to create a gate that eliminates cells that show an increase in pulse area without an increase in pulse height.

Figure_3

As shown in the graph below, cells along the diagonal are the single cells to be gated on.  The cells off this diagonal should be excluded from the data. For this gate, use FSC-Height (FSC-H) by FSC-Area (FSC-A). SSC-H by SSC-A can also be used.

It is important to remember to turn on the -H parameter in your flow cytometer’s software package before collecting data, so that it’s included in the FCS data file.

2. The ‘Time’ Gate.

The order which the cells pass the laser intercept is integral to the FCS file. As such, it’s possible to use time as a gating parameter to help ‘clean up’ the data. There are several reasons that the time gate should be added to your data analysis workflow.

If a stable flow stream (or flow of cells) is not established, good flow cytometry CANNOT be performed. Yes, there will be data in the FCS data file, but the quality of the data will be in question. Visualizing how well the flow of cells was by a time plot will reveal flow issues such as an unstable flow of cells (see graph below).

Figure_4

Areas where there was poor flow can be excluded from areas of good flow by time gating (see left-hand gate versus right-hand gate in graph below, respectively), which will ensure a higher quality of data.

Figure_5

Clogs can happen. Back pressure can happen. Tubes can run dry. These problems can cause issues with data acquisition, often times by affecting the flow rate, and manifesting in a loss of data. Plotting data versus time will help you identify these problems and allow you to remove the questionable events from your downstream analyses (see graph below).

3. The ‘Viability & Dump’ Gate.

Good panel design includes a viability dye and a dump channel. These two markers are labeled with the same fluorochrome (or at least occupy the same channel), and serve to reduce cells that are not of interest in the analysis.

Figure_6

Viability dyes help eliminate cells that are in the process of dying, which is important as these cells can skew your results. Dump channels, on the other hand, contain those antibodies targeting cells that are not of interest to your downstream analysis. By visualizing your Viability dye versus your dump channel, you’ll be able to accurately gate on your ‘live’ cells of interest (see graph below).

An easy way to create a dump gate is to use a collection of biotinylated antibodies and a streptavidin conjugate of the fluorochrome of your choice. This strategy sets you up for a magnetic bead depletion assay, should you want to sort your cells later.

Altogether, the above 3 gates would result in the following gating strategy:

Figure_7

Adding the singles, time, and viability & dump gates to your analysis will improve the accuracy of your results by removing cells that do not belong in your population of interest. By activating the height value in your flow cytometer’s software package, you’ll be able to draw an accurate singles gate. By looking at time versus the flow of your cells, you’ll be able to evaluate whether or not the cytometer operated correctly during your collection run. By using a viability & dump gate, you’ll ensure that you’re only looking at your ‘living’ population of interest.  Using and communicating these gates in your flow cytometry experiments will help improve consistency and reproducibility of the overall field of flow cytometry data analysis.

To learn more about getting your flow cytometry data published and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

5 Flow Cytometry Strategies That Sun Tzu Taught Me

5 Flow Cytometry Strategies That Sun Tzu Taught Me

By: Tim Bushnell, PhD

Sun Tzu was a Chinese general and philosopher. His most famous writing is ‘The Art of War’, and has been studied by generals and CEOs, to glean ideas and strategies to help their missions. I was recently rereading this work and thought to myself if any of Sun Tzu’s lessons could apply to flow cytometry.  So I have identified 5 points that I think lend themselves to thinking about flow cytometry.  “Quickness is the essence of the war.” In flow cytometry, speed is of the essence. The longer the cells are out of their natural environment, the less happy they…

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

A Basic Guide To Flow Cytometry (3 Foundational Concepts)

By: Tim Bushnell, PhD

Mastering foundational concepts are imperative for successfully using any technique or system.  Robert Heinlein introduced the term ‘Grok’  in his novel Stranger in a Strange Land. Ever since then it has made its way into popular culture. To Grok something is to understand it intuitively, fully. As a cytometrist, there are several key concepts that you must grok to be successful in your career. These foundational concepts are the key tools that we use day in and day out to identify and characterize our cells of interest.  Cells Flow cytometry measures biological processes at the whole cell level. To do…

Which Fluorophores To Use For Your Microscopy Experiment

Which Fluorophores To Use For Your Microscopy Experiment

By: Heather Brown-Harding, PhD

Fluorophore selection is important. I have often been asked by my facility users which fluorophore is best suited for their experiments. The answer to this is mostly dependent on whether they are using a widefield microscope with set excitation/emission cubes or a laser based system that lets you select the laser and the emission window. Once you have narrowed down which fluorophores you can excite and collect the correct emission, you can further refine the specific fluorophore that is best for your experiment.  In this blog  we will discuss how to determine what can work with your microscope, and how…

4 No Cost Ways To Improve Your Microscopy Image Quality

4 No Cost Ways To Improve Your Microscopy Image Quality

By: Heather Brown-Harding, PhD

Image quality is critical for accurate and reproducible data. Many people get stuck on the magnification of the objective or on using a confocal instead of a widefield microscope. There are several other factors that affect the image quality such as the numerical aperture of the objective, the signal-to-noise ratio of the system, or the brightness of the sample.  Numerical aperture is the ability of an objective to collect light from a sample, but it contributes to two key formulas that will affect your image quality. The first is the theoretical resolution of the objective. It is expressed with the…

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

By: Heather Brown-Harding, PhD

TIRF is not as common as other microscopy based techniques due to certain restrictions. We will discuss these restrictions, then analyze why it might be perfect for your experiment.  TIRF relies on an evanescent wave, created through a critical angle of coherent light (i.e. laser) that reaches a refractive index mismatch.  What does it mean in practice?  A high angle laser reflects off the interface of the coverslip and the sample. Although the depth that this wave penetrates is dependent on the wavelength of the light, in practice it is approximately 50-300nm from the coverslip. Therefore, the cell membrane is…

5 Drool Worthy Imaging Advances Of 2020

5 Drool Worthy Imaging Advances Of 2020

By: Heather Brown-Harding, PhD

2020 was a difficult year for many, with their own research being interrupted- either by lab shutdowns or recruitment into the race against COVID-19. Despite the challenges, scientists have continued to be creative and have pushed the boundaries of what is possible. These are the techniques and technologies that every microscopist was envious of in 2020. Spatially Resolved Transcriptomics Nature Methods declared that spatially resolved transcriptomics was the 2020 method of the year. These are a  group of methods that combine gene expression with their physical location. Single-cell RNA sequencing (scRNAseq) was originally developed for cells that had been dissociated…

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

5-Point Guide To Buying A New Microscope For Your Lab

5-Point Guide To Buying A New Microscope For Your Lab

By: Heather Brown-Harding, PhD

Have you ever noticed how painful it can be to purchase a new microscope? It would be hard to miss – this can be a frustrating process. A lot of scientists and students consider the new microscope hunt quite scary for a variety of reasons. It might be that you’re worried you won’t get the right microscope and that you’ll regret it, or you may find that dealing with salespeople, in general, makes you kind of uncomfortable. But remember, salespeople are just human beings like you and me, and if we can treat them as such, the whole process of…

Ask These 7 Questions Before Purchasing A Flow Cytometer

Ask These 7 Questions Before Purchasing A Flow Cytometer

By: Tim Bushnell, PhD

I am still convinced that my first cell sorter was possessed. The number of issues that I had with the system remains hard for me to believe, even after all these years. It had been purchased, in part, from one vendor because the sales rep for a competitor was nowhere to be found. At that time, I admit I wasn’t overly diligent in my research process. Since then, I’ve pinpointed some critical questions that need to be answered before purchasing a new instrument. At the end of the process, a shiny new instrument will arrive at your facility. Make sure…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.