Experimental Controls For Reproducible Flow Cytometry Measurements

With the increased focus on reproducibility of scientific data, it is important to look at how data is interpreted. To assist in data interpretation, the scientific method requires that controls are built into the experimental workflow. These controls are essential to minimize the effects of variables in the experiment so that changes caused by the independent variable can be properly elucidated. In fact, one of Begley’s 6 rules, as described by Bruce Booth, asks if the positive and negative controls were both shown.

What types of controls should be considered when designing a flow cytometry experiment?

Focus controls to minimize confounding variability. Sample processing, for example, can be controlled using a reference control. Where to properly set gates can be addressed using the FMO control. Controls for treatment can include Unstimulated and Stimulated controls. Reagent controls ensure that the reagents are working, and are at the correct concentration. Compensation controls are critical — these have been discussed in detail elsewhere. Of course, there are some controls that do not actually control for what they are used for, such as the isotype control.

1. Reference controls.

The purpose of a reference control is to determine if the process — from sample preparation through staining — has been performed consistently. It also allows for a reference range to be established that reflects the inherent variability in the preparation process.

Identifying a reference control is an important step in the panel design/validation process. This control should be readily accessible: for example, a large number of frozen PMBCs from a single source, or a defined mouse strain.

This sample must also reflect the expected staining pattern in sufficient detail to allow for verification that the antibodies properly labeled the targets.

When staining an experimental sample, the reference control is also stained.

If it behaves differently than you would expect on common plots, then there is likely a problem with the experiment and you need to troubleshoot.

It’s a great indicator of the health of your experiment. An example of this data is shown in Figure 1.

Figure 1: Tracking the results of staining a reference control.

This figure shows the results of 8 independent experiments, with the mean and SD shown. In the case of outliers, 2 examples shown by red arrows, it is critical to identify the root cause of the reason for the variation.

An added benefit of the reference control is that it can be used as a training tool for new users.

Since the expected range is known, having them stain the reference control helps them gain confidence in their technique.

Before the reference control is used up, it is critical to perform an overlap experiment. Run the new control 3-5 times in parallel with the old control to determine the differences between the old and new control ranges. Don’t forget to document!!!

2. Fluorescence minus one control.

A very important control for data interpretation is the fluorescence minus one, or the FMO, control. This is a gating control that is used to identify positive from negative. It is designed to reveal the spread of the data as it addresses the contribution of error measurements to the channel of interest from all the other fluorochromes in the panel.

As the name implies, cells are stained with all fluorochromes in the panel, except the one of interest. An example of this is shown below, in Figure 2.

Figure 2: FMO control in a 5-color panel to identify the proper placement of gates.

The red-dashed line represents the unstained boundary for the data. The middle panel represents the FMO control.

The staining above the red line implies that those cells are positive for the PE marker. However, since that tube doesn’t have PE, those cells cannot be positive.

The true boundary is shown by the blue line. The arrow on the far right panel shows the spread of the data — this is caused by the other fluorochromes in the panel spilling over into the channel of interest.

FMO controls are critical for setting gates, especially for rare events, emerging antigens, or any case where sensitivity is important to the measurement.

During the panel development phase, it’s good practice to run all possible FMO controls. From there, identify those controls that are essential for identifying the target cells, and run those with every panel.

3. Unstimulated control.

When performing a stimulation experiment, it is valuable to run both a stimulated and unstimulated control.

The stimulated control should be cells treated with a very powerful stimulant. This ensures that the cells can be stimulated, that the reagents are working, and it provides an upper limit for expected results.

The unstimulated control is also critical. In this case, the cells are not stimulated so that background signal can be identified. Shown here, is data from the 2006 Maecker and Trotter paper. This figure shows SEB stimulated cells, looking at CD4 expression on the y-axis and IL-2 production on the x-axis.

Figure 3: Controls for stimulation experiments. From Maecker and Trotter (2006) Figure 3.

The fully stained sample is shown at the top, and the FMO control is in the bottom middle and reveals the spectral contribution of the other fluorochromes in the panel to the PE channel. On the right is the isotype control, but more on this topic later.

The unstimulated sample, on the left, should have no IL-2 PE positivity.

Starting with the FMO control, and adjusting for the background staining of the IL-2 antibody using the unstimulated sample, allows for correct gate placement.

4. Isotype control.

The isotype control has been used in flow cytometry for many years. The theory behind this control is that non-specific binding of a given antibody isotype can be determined using an antibody of the same isotype as the antibody of interest, but to an irrelevant target.

For example, if your antibody of interest is a mouse IgG1, κ, clone MOPC-21 is an appropriate isotype control. The problem is that MOPC-21 has been around since the 1970s and the target is still unknown. This illustrates the assumptions that are made when using isotype controls

  1. The isotype control has the same affinity and characteristics for secondary targets as the original target antibody does.
  2. There are no primary targets for the isotype control to bind.
  3. The fluorochrome-to-protein ratio is the same on the target antibody as it is on the isotype control.

Historically, isotypes have been used to set gates and determine positivity. However, since the answers to these 3 questions are unclear, it is not a true control, but rather another experimental variable.

Thus, the isotype control is not an effective or worthwhile control, and you are better off focusing on other controls.

In the 2006 Maecker and Trotter paper, the authors showed the following figure (Figure 4, left panel).

Figure 4: Isotype Control data.

The cells, “small lymphocytes”, were identified by scatter characteristics and the staining of 3 different isotype controls is shown. The red line is added for emphasis.

More recently, a paper by Andersen and colleagues attempted to identify the best methods for blocking their cells of interest. The first figure shows the results of staining for a known target (Tie-2) on the surface of the cells of interest. The corresponding isotype control staining is also shown and, based on that staining, the interpretation of the data would be that the cells do not express Tie-2, which is known to be false.

Expanding on this finding, the authors attempted to identify the best blocking strategy for their target cells. The results of this data are shown in Figure 5.

Figure 5: Results of testing different blocking reagents.

The authors compared the Median Fluorescence Intensity (MFI) of the unstained cells in the channel of interest in the absence of an isotype control to the MFI of the cells stained with the appropriate isotype control.

Different blocking strategies were performed and the cells stained with the isotype control. The results suggested that Human IgG was best for blocking, due to low cost and stability.

5. Reagent Controls

A. Titration

One important experimental control is to validate the amount of antibody being used for staining. If too much antibody is used, there will be an increase in non-specific binding, reducing sensitivity. Too little antibody, and the cells are not saturated — again, resulting in reduced sensitivity.

The best way to determine the optimal antibody concentration is to perform a titration experiment. In a titration experiment, you vary the amount of antibody used in staining, while holding other variables — incubation time, temperature, and cell concentration — constant. After acquiring the data, calculate the staining index for each concentration. An example of a titration experiment is shown below in Figure 6.

Figure 6: Example of antibody titration.

The plot on the right of concentration vs staining index shows that at low or high antibody concentrations, the SI decreases. The boxed region between is the optimal staining range. Splitting the difference between the 2 shoulders provides a best recommendation for the antibody concentration to use.

B. Isoclonal control

The isoclonal control was originally published to demonstrate that the cells of interest were not binding the fluorochrome on the antibodies, as has been shown for CD64. The isoclonal control is a great way to show that you have specific binding.

To perform the isoclonal control, mix unlabeled antibody of the same clone to compete with the binding of the original antibody. As shown in Figure 7, increasing the ratio of unlabeled antibody results in a decrease in staining.

Figure 7: Isoclonal control demonstrating specific binding.

In conclusion, getting into the mindset to improve the reproducibility of flow cytometry experiments requires a hard look at the appropriate controls to use in each experiment. These controls are essential tools for proper data interpretation, and should be referred to in any communication about the data and shown in supplemental figures at a minimum. Further, consider showing all the data by uploading it to the FlowRepository.

In the end, it is in everyone’s interest to provide the best data, with all the necessary information, to reproduce and expand the findings. As Isaac Newton said, “If I have seen further than others, it is by standing on the shoulders of giants.” That is how science makes progress.

To learn more about Experimental Controls For Reproducible Flow Cytometry Measurements, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

How To Do Variant Calling From RNASeq NGS Data

How To Do Variant Calling From RNASeq NGS Data

By: Deepak Kumar, PhD

Developing variant calling and analysis pipelines for NGS sequenced data have become a norm in clinical labs. These pipelines include a strategic integration of several tools and techniques to identify molecular and structural variants. That eventually helps in the apt variant annotation and interpretation. This blog will delve into the concepts and intricacies of developing a “variant calling” pipeline using GATK. “Variant calling” can also be performed using tools other than GATK, such as FREEBAYES and SAMTOOLS.  In this blog, I will walk you through variant calling methods on Illumina germline RNASeq data. In the steps, wherever required, I will…

How small can you go? Flow cytometry of bacteria and viruses

How small can you go? Flow cytometry of bacteria and viruses

By: Tim Bushnell, PhD

Flow cytometers are traditionally designed for measuring particles, like beads and cells. These tend to fall in the small micron size range. Looking at the relative size of different targets of biological interest, it is clear the most common targets for flow cytometry (cells) are comparatively large (figure 1). Figure 1:  Relative size of different biological targets of interest. Image modified from Bioninja.    In the visible spectrum, where most of the excitation light sources reside, it is clear the cells are larger than the light. This is important as one of the characteristics that we typically measure is the amount…

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

By: Tim Bushnell, PhD

As the labeled cell passes through the interrogation point, it is illuminated by the excitation lasers. The fluorochromes, fluoresce; emitting photons of a higher wavelength than the excitation source. This is typically modeled using spectral viewers such as in the figure below, which shows the excitation (dashed lines) and emission (filled curves) for Brilliant Violet 421TM (purple) and Alexa Fluor 488Ⓡ (green).  Figure 1: Excitation and emission profiles of BV421TM and AF488Ⓡ  In traditional fluorescent flow cytometry (TFF), the instrument measures each fluorochrome off an individual detector. Since the detectors we use — photomultiplier tubes (PMT) and avalanche photodiodes (APD)…

How To Extract Cells From Tissues Using Laser Capture Microscopy

How To Extract Cells From Tissues Using Laser Capture Microscopy

By: Tim Bushnell, PhD

Extracting specific cells still remains an important aspect of several emerging genomic techniques. Prior knowledge about the input cells helps to put the downstream results in context. The most common isolation technique is cell sorting, but it requires a single cell suspension and eliminates any spatial information about the microenvironment. Spatial transcriptomics is an emerging technique that can address some of these issues, but that is a topic for another blog.  So what does a researcher who needs to isolate a specific type of cell do? The answer lies in the technique of laser capture microdissection (LCM). Developed at the National…

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

By: Tim Bushnell, PhD

Incorporating quality control as a part of the optimization process in  your flow cytometry protocol is important. Take a step back and consider how to build quality control tracking into the experimental protocol.  When researchers hear about quality control, they immediately shift their attention to those operating and maintaining the instrument, as if the whole weight of QC should fall on their shoulders.   It is true that core facilities work hard to provide high-quality instruments and monitor performance over time so that the researchers can enjoy uniformity in their experiments. That, however, is just one level of QC.  As the experimental…

Understanding Clinical Trials And Drug Development As A Research Scientist

Understanding Clinical Trials And Drug Development As A Research Scientist

By: Deepak Kumar, PhD

Clinical trials are studies designed to test the novel methods of diagnosing and treating health conditions – by observing the outcomes of human subjects under experimental conditions.  These are interventional studies that are performed under stringent clinical laboratory settings. Contrariwise, non-interventional studies are performed outside the clinical trial settings that provide researchers an opportunity to monitor the effect of drugs in real-life situations. Non-interventional trials are also termed observational studies as they include post-marketing surveillance studies (PMS) and post-authorization safety studies (PASS). Clinical trials are preferred for testing newly developed drugs since interventional studies are conducted in a highly monitored…

How To Optimize Instrument Voltage For Flow Cytometry Experiments  (Part 3 Of 6)

How To Optimize Instrument Voltage For Flow Cytometry Experiments (Part 3 Of 6)

By: Tim Bushnell, PhD

As we continue to explore the steps involved in optimizing a flow cytometry experiment, we turn our attention to the detectors and optimizing sensitivity: instrument voltage optimization.  This is important as we want to ensure that we can make as sensitive a measurement as possible.  This requires us to know the optimal sensitivity of our instrument, and how our stained cells are resolved based on that voltage.  Let’s start by asking the question what makes a good voltage?  Joe Trotter, from the BD Biosciences Advanced Technology Group, once suggested the following:  Electronic noise effects resolution sensitivity   A good minimal PMT…

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

By: Deepak Kumar, PhD

In the first blog of this series, we explored the power of sequencing the genome at various levels. We also dealt with how the characterization of the RNA expression levels helps us to understand the changes at the genome level. These changes impact the downstream expression of the target genes. In this blog, we will explore how NGS sequencing can help us comprehend DNA modification that affect the expression pattern of the given genes (epigenetic profiling) as well as characterizing the DNA-protein interactions that allow for the identification of genes that may be regulated by a given protein.  DNA Methylation Profiling…

How To Profile DNA And RNA Expression Using Next Generation Sequencing

How To Profile DNA And RNA Expression Using Next Generation Sequencing

By: Deepak Kumar, PhD

Why is Next Generation Sequencing so powerful to explore and answer both clinical and research questions. With the ability to sequence whole genomes, identifying novel changes between individuals, to exploring what RNA sequences are being expressed, or to examine DNA modifications and protein-DNA interactions occurring that can help researchers better understand the complex regulation of transcription. This, in turn, allows them to characterize changes during different disease states, which can suggest a way to treat said disease.  Over the next two blogs, I will highlight these different methods along with illustrating how these can help clinical diagnostics as well as…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.