10 Things Smart Scientists Do Before Sorting Cells

Screen Shot 2014-04-04 at 4.45.16 PM

Cell sorting can be a scary proposition.

A precious sample is introduced into a machine that pressurizes the cells to 70 PSI, moves them past one or more lasers, vibrates the stream at 90 kHz before decelerating the cells to atmospheric pressure before they hit an aqueous surface.

Many cells survive this journey. But some do not.

Here are 10 things smart scientists do to improve their cell recovery:

1. They pre-coat their catch tubes.

A smart way to improve your cell recovery is to incubate your plastic tubes with a buffer solution containing protein. This will help reduce/eliminate the charge on the plastic.

Since the droplet containing the cell is charged, it can be attracted to the charge on the plastic. This results in the droplet hitting the side of the tube wall, and the cell dying as the small volume of liquid evaporates.

To prevent this, pre-coat the tube with protein/buffer to neutralize the plastic charge.  Even better, make sure that your tubes are not polystyrene.

2. They know the catch buffer.

Cells are going to be traveling in buffered saline. This is not very conducive for keeping cells alive for long periods of time. The good news is that you can improve your recovering by ensuring that the catch buffer has some – but not too much – protein in it. Typically only 10-50% protein in the catch buffer is sufficient.

3. They add HEPES.

If you’re sorting into media, make sure the media is HEPES buffered.  Buffers like RPMI are formulated to buffer in a CO2 atmosphere (like the atmosphere found in your lab’s incubator) and, as such, don’t buffer well in our normal atmosphere.

4. They keep them cold (or warm).

Smart scientists know how their cells respond to temperature differences.  Some cells do not like to be kept cold and will die quickly if sorted into 4 degree Celsius buffer.

5. They use a soybean trypsin inhibitor.

Sorting adherent cells adds a level of complexity to an experiment. The cells have to be disassociated to pass through the sorter, and this is often done with trypsin. The quickest and most common neutralization method is to add FBS to the cells.

Be careful of this – while it neutralizes the trypsin effectively, it also adds back all the components that cells need to re-adhere to each other.  Try soybean trypsin inhibitor instead.

6. They filter.

Nothing is worse than a clogged nozzle when sorting. It adds time to the sort and reduces efficiency (and annoys the sort operator).

Just before sorting, make sure to pass the cells through an appropriate sized filter to remove clumps and debris. The smartest scientists go as far as looking at their cells under a microscope to ensure that there are no clumps prior to sorting.

7. They use a viability dye.

Make sure to include a viability dye in your staining panel. This will help eliminate dead cells.

Using a viability dye is always a smart decision.

8. They design proper antibody panels.

When trying to define a cell population, make sure you include both positive and negative markers in your antibody panel. The use of dump channels, negative markers and multiple positive markers will help ensure that the sorted cells are what they are supposed to be.

9. They ALWAYS count their cells.

Know the cell count at the time the cells are going onto the sorter – NOT from when you first began preparing them.

Since an optimal sort speed is typically ¼ the droplet generation frequency, over concentrating the cells will reduce purity at the back end. Bring some dilution buffer with you just in case the cells are too concentrated.

10. They are aware of their threshold settings.

The higher the threshold, the easier it is to visualize the specific cell population. But this doesn’t eliminate the fact that the debris and junk are still present within the cell population you’re visualizing. It means that the cytometer is ignoring it.

Here’s the key: whatever the cytometer ignores will end up in the final sorted population.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

Which Fluorophores To Use For Your Microscopy Experiment

Which Fluorophores To Use For Your Microscopy Experiment

By: Heather Brown-Harding, PhD

Fluorophore selection is important. I have often been asked by my facility users which fluorophore is best suited for their experiments. The answer to this is mostly dependent on whether they are using a widefield microscope with set excitation/emission cubes or a laser based system that lets you select the laser and the emission window. Once you have narrowed down which fluorophores you can excite and collect the correct emission, you can further refine the specific fluorophore that is best for your experiment.  In this blog  we will discuss how to determine what can work with your microscope, and how…

4 No Cost Ways To Improve Your Microscopy Image Quality

4 No Cost Ways To Improve Your Microscopy Image Quality

By: Heather Brown-Harding, PhD

Image quality is critical for accurate and reproducible data. Many people get stuck on the magnification of the objective or on using a confocal instead of a widefield microscope. There are several other factors that affect the image quality such as the numerical aperture of the objective, the signal-to-noise ratio of the system, or the brightness of the sample.  Numerical aperture is the ability of an objective to collect light from a sample, but it contributes to two key formulas that will affect your image quality. The first is the theoretical resolution of the objective. It is expressed with the…

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

By: Heather Brown-Harding, PhD

TIRF is not as common as other microscopy based techniques due to certain restrictions. We will discuss these restrictions, then analyze why it might be perfect for your experiment.  TIRF relies on an evanescent wave, created through a critical angle of coherent light (i.e. laser) that reaches a refractive index mismatch.  What does it mean in practice?  A high angle laser reflects off the interface of the coverslip and the sample. Although the depth that this wave penetrates is dependent on the wavelength of the light, in practice it is approximately 50-300nm from the coverslip. Therefore, the cell membrane is…

5 Drool Worthy Imaging Advances Of 2020

5 Drool Worthy Imaging Advances Of 2020

By: Heather Brown-Harding, PhD

2020 was a difficult year for many, with their own research being interrupted- either by lab shutdowns or recruitment into the race against COVID-19. Despite the challenges, scientists have continued to be creative and have pushed the boundaries of what is possible. These are the techniques and technologies that every microscopist was envious of in 2020. Spatially Resolved Transcriptomics Nature Methods declared that spatially resolved transcriptomics was the 2020 method of the year. These are a  group of methods that combine gene expression with their physical location. Single-cell RNA sequencing (scRNAseq) was originally developed for cells that had been dissociated…

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

Getting A New Flow Cytometer? Try Before You Buy (And 2 Other Tips)

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

5-Point Guide To Buying A New Microscope For Your Lab

5-Point Guide To Buying A New Microscope For Your Lab

By: Heather Brown-Harding, PhD

Have you ever noticed how painful it can be to purchase a new microscope? It would be hard to miss – this can be a frustrating process. A lot of scientists and students consider the new microscope hunt quite scary for a variety of reasons. It might be that you’re worried you won’t get the right microscope and that you’ll regret it, or you may find that dealing with salespeople, in general, makes you kind of uncomfortable. But remember, salespeople are just human beings like you and me, and if we can treat them as such, the whole process of…

Ask These 7 Questions Before Purchasing A Flow Cytometer

Ask These 7 Questions Before Purchasing A Flow Cytometer

By: Tim Bushnell, PhD

I am still convinced that my first cell sorter was possessed. The number of issues that I had with the system remains hard for me to believe, even after all these years. It had been purchased, in part, from one vendor because the sales rep for a competitor was nowhere to be found. At that time, I admit I wasn’t overly diligent in my research process. Since then, I’ve pinpointed some critical questions that need to be answered before purchasing a new instrument. At the end of the process, a shiny new instrument will arrive at your facility. Make sure…

Instrument Quality Control For Reproducible Flow Cytometry Experiments

Instrument Quality Control For Reproducible Flow Cytometry Experiments

By: Tim Bushnell, PhD

The flow cytometer is an integral component of any flow cytometry experiment, and special attention should be paid to ensuring that it is working correctly and consistently. As an end-user, the researcher should be able to sit down at a machine and know that it is performing the same way today as it was yesterday and last week. Equally important is that if any changes in instrument performance have occured, the end-user knows how they have been addressed and corrected, rather than letting them fester and potentially affect the results. Quality control measurements can include a variety of targets, such…

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

How to Optimize Flow Cytometry Hardware For Rare Event Analysis

By: Tim Bushnell, PhD

Preparing for rare event analysis requires an understanding of the power and limitation of the instrument to be used. From how fast to run the fluidics, to how the signal is processed to the number of gates that can be used in the sorting experiment, each factor impacts the outcome of the experiment.

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.