Using Begley’s Rules To Improve Reproducibility In Flow Cytometry

Isaac Newton was famous for saying “If I have seen further than others, it is by standing upon the shoulders of giants.” Implicit in that statement is that the information that the giants provided was reproducible. In fact, reproducibility is central to the scientific method and as far back as the 10th century, the concept of reproducibility of data was being discussed by Ibn al-Haytham.

In 2011, Prinz et al. published an article that indicated a case study looking at reproducibility by Bayer Healthcare found only 25% of academic studies were reproducible. This was followed up in 2012 by a report from Begley and Ellis that indicated on 11% of 53 landmark oncology studies were able to be replicated. So it seems that while we are trying to see farther, our lens may be out of focus.

Bruce Booth, writing for Forbes, published an article called “Scientific Reproducibility: Begley’s Six Rules” and in this article, he proposed the following 6 rules that should serve as a roadmap in evaluating scientific work, both published and your own work. These rules are:

  1. Were the studies blinded?
  2. Were all the results shown?
  3. Were the experiments repeated?
  4. Were the positive and negative controls shown?
  5. Were the reagents validated?
  6. Were the statistical tests appropriate?

While these rules are focused more on clinical trials, they are readily adopted for basic scientific inquiry. By starting to think about these questions in the early stages of discovery and into pre-clinical studies, which should increase the confidence and reproducibility of later stages of the process.

Using Begley’s Rules

Reproducibility is a mindset, it’s not one simple tweak and the data is reproducible. It is a matter of critically evaluating each process in the experiment and identifying areas that can be improved. It involves complete communication of the process. It involves relying on well-developed and documented standard operating procedures that everyone involved in the project are trained on.

Turning our attention back to Begley’s rules, how can these rules help you improve your research? They help provide a roadmap on how to design, validate, execute and report experimental data in a way that is more robust and reproducible.

1. Take the first rule, “Were the studies blinded?

This is a critical component of clinical trials. In blinded studies, the subject does not know if they are part of the control group or the experimental group. In a double-blinded studied the experimenter also does not know what group the subjects are part of.

This helps prevent experimenter bias impacting the data. In the research setting, this technique is not often used, but with a little coordination within the laboratory, this could be implemented in the research setting.

2. Thinking about the second rule: “Were all the results shown?”

Flow cytometry is a data-rich technology and numbers are the name of the game. Experiments looking at the change in percentage a population or the change in the expression pattern of a given protein.

For this reason, the results of any experiments can often be summarized and presented as a table or graph that provides statistical information about the experiment, which is used to support (or refute) the thesis of the argument. A histogram or bivariant gating strategy is useful, but the meat of the argument will be in these summary figures, such as the one shown below.

Figure 1: Summary figure showing all the results of an experiment measuring the the changes in CD4+ cells after drug treatment. All the data is shown with the mean and standard deviation indicated. The number of data points and the p-value between the two datasets is indicated.

In addition to showing the data, thanks to the support of the Wallace H. Coulter Foundation and ISAC, there is a public database where flow cytometry data can be deposited. The Flow Repository allows researchers to upload their data for their published experiments. This allows for all researchers to review the data that the paper is based on, thus improving the ability of researchers to repeat and extend findings of interest.

3. In lines with showing all the data is the thir rule: “Were the experiments repeated?”

For any experiment, it is critical that there the experiments are replicated. This becomes the ‘n’ in any graph and helps evaluate how robust the experiment has been tested. Based on discovery-based work, estimates of the magnitude of the different and the expected variance in the data can be estimated. This, in turn, allows for a Power calculation, which can help guide the researcher in determining the ‘n’.

The smaller the difference that the researchers wish to test, the more samples that they will need to run. The program Statmate is one useful tool for performing these calculations. Figure 2 shows how to determine the number of samples to run based on the Statmate output.

Figure 2: Statmate output used to determine the number of replicates needed.

4. This leads to the fourth rule: “Were the positive and negative controls shown?”

In flow cytometry the controls that are used to determine the population of interest are very important to show. Since gating is a data reduction technique, incorrect gating can impact the data and conclusions.

Without showing and explaining the use of the controls, gating is more a subjective art than an objective evaluation. For those starting out in flow cytometry, using the data available in the Flow Repository along with the paper it came from is a good way to practice. The OMIPs are especially useful for this purpose.

5. Next is to examine the fifth rule :“Were the reagents validated?”

When thinking about flow cytometry, reagent validation is a critical step in the validation and optimization of any polychromatic panel. This is especially true of the antibodies used in experiments.

In Bradbury and Plückthun’s commentary in Nature, the authors estimate about 50% of the money spent on antibodies is wasted due to the quality of the antibodies. Issues with antibodies can include cross-reactivity, lot-to-lot variability and even the wrong antibody for the application.

With the advent of recombinant antibodies, this should begin to become less and less of an issue, but it will take time to for these reagents to penetrate the market. At a minimum, every antibody that comes into the lab should be tested and titrated to ensure the reagent is working properly.

Beyond the antibodies, any other reagent that is being used should be tested and validated. This includes the flow cytometer. While not a reagent, per se, it is essential to gathering the data and the results of the quality control being performed on the system should be accessible to the investigator. In fact, the investigator can build into their procedures their own QC steps that show the instrument and assay are working.

6. The last of Begley’s rules is “Were the statistical tests appropriate?”

All researchers want their data to be shown to be statistically significant because there is an inherent bias in published articles. It was shown by Dickersin et al., in their 1987 paper that papers containing data shown to be statistically significant were 3 times more likely to be published. Issues with HARKing and p-Hacking are troubling but can be reduced or avoided with a simple change to the mindset in experimental design.

Before any experiments are performed, it is critical to consider the outcome and how one would validate the hypothesis being tested. Doing this at the beginning of the process, rather than towards the end, allows the researcher to define the statistical testing that will be used and the threshold for significance.

Any deviations from this plan need to be reported so that readers can understand and evaluate the statistical analysis. Second, by defining the power of the experiment, this reduces the potential to stop collecting data early when the results support your hypothesis. While outliers can be very interesting in their own right, define a rule for excluding them from the analysis and report it.

In summary, Begley’s rules are a useful tool to use to evaluate the quality and reproducibility of data. It helps you look for important issues in a report and your own experiments. Couple these with the best practices in flow cytometry, and you are well on your way to improving the rigor and reproducibility of your work.

To learn more about Using Begley’s Rules To Improve Reproducibility In Flow Cytometry, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

The 5 Fundamental Methods For Imaging Nucleic Acids

The 5 Fundamental Methods For Imaging Nucleic Acids

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Avoid Flow Cytometry Faux Pas: How To Set Voltage The Right Way

Avoid Flow Cytometry Faux Pas: How To Set Voltage The Right Way

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

My 3-Step Panel Validation Pocket Guide

My 3-Step Panel Validation Pocket Guide

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Easy-To-Forget Flow Fundamentals That Thwart Bad Science

Easy-To-Forget Flow Fundamentals That Thwart Bad Science

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Important Controls For Your Flow Cytometry Lab

Important Controls For Your Flow Cytometry Lab

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

4 Factors To Improve Flow Cytometry Cell Sorting Speed

4 Factors To Improve Flow Cytometry Cell Sorting Speed

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

5 Techniques For Dramatic Improvements In Reproducibility

5 Techniques For Dramatic Improvements In Reproducibility

By: Heather Brown-Harding, PhD

It’s not easy to improve reproducibility in your experiments. Image manipulation has become a major problem in science, whether intentional or accidental. This has exploded with the advent of digital imaging and software like Photoshop. There are even mobile applications like Instagram filters that can be used for imaging trickery. It should go without saying that image reuse/manipulation represents profound dishonesty in science – a field intended to uphold the most stringent possible standards of truthful inquiry! But what about studies with a sloppy or stunted capacity for reproduction? These, too, plague science and hinder our ability to seamlessly move…

3 Compensation Mistakes That Will Ruin Your Flow Cytometry Experiments

3 Compensation Mistakes That Will Ruin Your Flow Cytometry Experiments

By: Tim Bushnell, PhD

Compensation is necessary due to the physics of fluorescence. Basically, compensation is the mathematical process of correcting spectral spillover from a fluorochrome into a secondary detector so that it is possible to identify single positive events in the context of a multidimensional panel. Good compensation requires that your controls tightly adhere to three rules. If the controls don’t meet this criteria, it will lead to faulty compensation resulting in false conclusions and poorly reproducible data. Even among flow cytometry veterans, a strong foundation is occasionally in need of a tune-up. And in a topic as complex as flow cytometry, it’s…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.