The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

Incorporating quality control as a part of the optimization process in  your flow cytometry protocol is important. Take a step back and consider how to build quality control tracking into the experimental protocol.  When researchers hear about quality control, they immediately shift their attention to those operating and maintaining the instrument, as if the whole weight of QC should fall on their shoulders.  

It is true that core facilities work hard to provide high-quality instruments and monitor performance over time so that the researchers can enjoy uniformity in their experiments.

That, however, is just one level of QC.  As the experimental results are critical for the researcher’s long-term goals therefore they should not be so laissez-faire with QC. Instead, they should jump in with gusto to not only understand what those managing the instruments are doing, but also to develop specific QC protocols for their experiment. This should ideally be done during the optimization phase.  

1. Instrument Quality Control 

Instrument quality control is designed to ensure that the instrument is performing consistently over time. It is extremely important to perform this each time prior to instrument use.   The instrument vendor will have their own recommendations for the daily QC. These directions are useful as if there are issues you can communicate with the vendor as you are providing them with information they expect.  

Generally this is run when the instrument is first turned on.  In many cases, it is worth performing at least a quick clean before starting the QC protocols. If you are a user who has access outside the normal hours of the instrument, it might be worth learning the QC protocols for yourself so that you can perform this necessary step before starting with your samples. A little QC goes a long way to making sure the instrument is behaving properly. 


Figure 1: Levey-Jennings plot of voltage over time

Another  important thing to remember is that while performing QC, make sure to examine the data, not just the pass/fail for the day, but the trends over the past week or month. Looking at how the data changes over time provides valuable insight into the stability of the instrument. 

One of the most common ways to do this is to use the Levey-Jennings plot. In this plot, the cumulative data is plotted over time, with the mean, and  +/- 2 (sometimes 3) standard deviations are overlaid. The user can see if the data they generated falls inside or outside of these control points.

It is pivotal to establish rules as  when to intervene based on the data. The most common rules are called the Westgard rules, which specify when a process is out of control. In these cases, the process must be stopped and the process corrected. In the case of an instrument, this could be as simple as cleaning the instrument, or as complex as requiring a service call due to a bad part. 

2. Voltage Control

If you have gone through the trouble of finding the optimal voltage for your specific experiment, it is worth the time to ensure that you maintain that intensity throughout the experiment. There are a variety of ways to do this, but one of the easiest is to use a bead to track the fluorescent intensity over time. The advantage of a bead is its consistency and traceability. You can order a given lot and use it for a longer period of time. 

Of course, this means you need to set up your own tracking sheets, so that when you sit down at the flow cytometer.  This way when you start working with the instrument, you can pull this sheet up, and run your bead control. This will let you both monitor the voltages and adjust it to hit the target values.  An example of such a sheet is shown below. 

Figure 2:  A QC tracking sheet. 

With this, you will also need to export the appropriate values. In this case since you’re focusing on the MFI of the bead, you would use tracking voltage change in your Levey-Jennings plot.  Any time you see significant issues (a major change greater than some percentage you define), it’s worth checking with the operators of the system to see if anything may have changed – new laser, new flow cell or the like

When you are coming to the end of the beadlot you are using, it’s time to order a new lot and perform an overlapping experiment.  In this experiment,  you run the old lot and the new lot at the same time, so that you can define the new target values, as shown below.

Figure 3 : Overlap experiment between old and new beadlot. 

In this case, the old bead lot has a mean fluorescent intensity of ~30,000.  The new beadlot has an MFI of ~49,000.  Thus, in your QC data, you would make a note of this, as well as the date when you transitioned over to the new value. 

3. Reference Control


The third control to evaluate during development is the reference control. The reference control is a known sample that will behave in a defined way in your panel. This could either be frozen PBMCs, a cell line, or a mixture of different cells – but something that you can standardize.  Each time you run an experiment, you take this reference control out and take it through the same process as the experimental sample. In doing so, this provides you with a control for the process of staining. This assures the researcher that the process worked, and that nothing was missing. It also provides a good check point – again running this before you run your sample will show if there are issues, allowing you to pause and troubleshoot before putting your valuable sample in the instrument. 

Concluding Remarks

During the optimization process of panel development, determining the important quality control metrics that need to be tracked is essential. These values are going to help determine if the data you generate is consistent and reproducible, as well as alert you to trouble on the instrument before you begin running your precious samples. While QC may not be as exciting as the actual data generation process, it is exceedingly important to ensure the quality of your data. 

To learn more about important control measures for your flow cytometry lab, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

4 Critical Rules For Spectral Unmixing

4 Critical Rules For Spectral Unmixing

By: Tim Bushnell, PhD

Spectral unmixing is the mathematical process by which a spectrum is broken down into the abundances of the different fluorochromes that make up the observed spectrum. This was described in the paper by Novo et al., (2013), which presented a generalized model for spectral unmixing of flow cytometry data. Of course, like compensation in traditional fluorescent flow cytometry, there are important rules to observe regarding the controls that are used to unmix the sample. If you need a refresher on the rules for TFF compensation, you can read about them here.    This blog will discuss the generalized process of spectral unmixing…

How To Buy A Flow Cytometer - What You Need To Evaluate From A To Z

How To Buy A Flow Cytometer - What You Need To Evaluate From A To Z

By: Tim Bushnell, PhD

So you have the money to buy a flow cytometer. Is it a sorter? Or perhaps a spectral analyzer? No wait, maybe an imaging mass cytometer?  Big or small?  What to choose?  How to choose?  More importantly, once you sign the contract to purchase the instrument, you don’t want to be struck with buyers remorse.  It is indeed a big decision and we have the best advice for you to consider before making the purchase. Let’s discuss some of the steps you should take to prevent buyers remorse and ensure you are getting the best instrument for your needs.  Do…

How To Do Variant Calling From RNASeq NGS Data

How To Do Variant Calling From RNASeq NGS Data

By: Deepak Kumar, PhD

Developing variant calling and analysis pipelines for NGS sequenced data have become a norm in clinical labs. These pipelines include a strategic integration of several tools and techniques to identify molecular and structural variants. That eventually helps in the apt variant annotation and interpretation. This blog will delve into the concepts and intricacies of developing a “variant calling” pipeline using GATK. “Variant calling” can also be performed using tools other than GATK, such as FREEBAYES and SAMTOOLS.  In this blog, I will walk you through variant calling methods on Illumina germline RNASeq data. In the steps, wherever required, I will…

How small can you go? Flow cytometry of bacteria and viruses

How small can you go? Flow cytometry of bacteria and viruses

By: Tim Bushnell, PhD

Flow cytometers are traditionally designed for measuring particles, like beads and cells. These tend to fall in the small micron size range. Looking at the relative size of different targets of biological interest, it is clear the most common targets for flow cytometry (cells) are comparatively large (figure 1). Figure 1:  Relative size of different biological targets of interest. Image modified from Bioninja.    In the visible spectrum, where most of the excitation light sources reside, it is clear the cells are larger than the light. This is important as one of the characteristics that we typically measure is the amount…

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

By: Tim Bushnell, PhD

As the labeled cell passes through the interrogation point, it is illuminated by the excitation lasers. The fluorochromes, fluoresce; emitting photons of a higher wavelength than the excitation source. This is typically modeled using spectral viewers such as in the figure below, which shows the excitation (dashed lines) and emission (filled curves) for Brilliant Violet 421TM (purple) and Alexa Fluor 488Ⓡ (green).  Figure 1: Excitation and emission profiles of BV421TM and AF488Ⓡ  In traditional fluorescent flow cytometry (TFF), the instrument measures each fluorochrome off an individual detector. Since the detectors we use — photomultiplier tubes (PMT) and avalanche photodiodes (APD)…

How To Extract Cells From Tissues Using Laser Capture Microscopy

How To Extract Cells From Tissues Using Laser Capture Microscopy

By: Tim Bushnell, PhD

Extracting specific cells still remains an important aspect of several emerging genomic techniques. Prior knowledge about the input cells helps to put the downstream results in context. The most common isolation technique is cell sorting, but it requires a single cell suspension and eliminates any spatial information about the microenvironment. Spatial transcriptomics is an emerging technique that can address some of these issues, but that is a topic for another blog.  So what does a researcher who needs to isolate a specific type of cell do? The answer lies in the technique of laser capture microdissection (LCM). Developed at the National…

Understanding Clinical Trials And Drug Development As A Research Scientist

Understanding Clinical Trials And Drug Development As A Research Scientist

By: Deepak Kumar, PhD

Clinical trials are studies designed to test the novel methods of diagnosing and treating health conditions – by observing the outcomes of human subjects under experimental conditions.  These are interventional studies that are performed under stringent clinical laboratory settings. Contrariwise, non-interventional studies are performed outside the clinical trial settings that provide researchers an opportunity to monitor the effect of drugs in real-life situations. Non-interventional trials are also termed observational studies as they include post-marketing surveillance studies (PMS) and post-authorization safety studies (PASS). Clinical trials are preferred for testing newly developed drugs since interventional studies are conducted in a highly monitored…

How To Optimize Instrument Voltage For Flow Cytometry Experiments  (Part 3 Of 6)

How To Optimize Instrument Voltage For Flow Cytometry Experiments (Part 3 Of 6)

By: Tim Bushnell, PhD

As we continue to explore the steps involved in optimizing a flow cytometry experiment, we turn our attention to the detectors and optimizing sensitivity: instrument voltage optimization.  This is important as we want to ensure that we can make as sensitive a measurement as possible.  This requires us to know the optimal sensitivity of our instrument, and how our stained cells are resolved based on that voltage.  Let’s start by asking the question what makes a good voltage?  Joe Trotter, from the BD Biosciences Advanced Technology Group, once suggested the following:  Electronic noise effects resolution sensitivity   A good minimal PMT…

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

By: Deepak Kumar, PhD

In the first blog of this series, we explored the power of sequencing the genome at various levels. We also dealt with how the characterization of the RNA expression levels helps us to understand the changes at the genome level. These changes impact the downstream expression of the target genes. In this blog, we will explore how NGS sequencing can help us comprehend DNA modification that affect the expression pattern of the given genes (epigenetic profiling) as well as characterizing the DNA-protein interactions that allow for the identification of genes that may be regulated by a given protein.  DNA Methylation Profiling…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.