Logicle Scaling

An implementation of biexponential scaling published by the Herzenberg lab at Stanford. The biexonential scale is a combination of linear and log scaling on a single axis using an arcsine function as its backbone. The “logicle” implementation of biexponential was implemented in many popular software packages like FACSDiva and FlowJo. Other types of biexponential scaling exist, including Hyperlog. Biexponential scales are more generally referred to as hybrid scales and include other variations like lin/log or log with negative.

More information on logicle sclaing can be found here:

Parks DR, Roederer M, Moore WA. (2006). A new “Logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry. 69: 541-545

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

Tools to Improve Your Panel Design – Determining Antigen Density

Tools to Improve Your Panel Design – Determining Antigen Density

By: Tim Bushnell, PhD

When a researcher chooses to use flow cytometry to answer a scientific question, they first have to build a polychromatic panel that will take advantage of the power of the technology and experimental design. When we set up to use flow cytometry to answer a scientific question, we have to design a polychromatic panel that will allow us to identify the cells of interest – the target of the research.  To identify these cells, we need to build a panel that takes advantage of the relative brightness of the fluorochromes, the expression level of the different proteins on the cell,…

This Is How Full Spectrum Cytometry Works

This Is How Full Spectrum Cytometry Works

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

My Proven 5-Point Fast Track To A Career In Flow

My Proven 5-Point Fast Track To A Career In Flow

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Up Your Stain Game With These 7 Non-Fluorescent Histology Dyes

Up Your Stain Game With These 7 Non-Fluorescent Histology Dyes

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

3 Ways Flow Cytometry Can Be Used To Research Bacteria

3 Ways Flow Cytometry Can Be Used To Research Bacteria

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Avoid Flow Cytometry Faux Pas: How To Set Voltage The Right Way

Avoid Flow Cytometry Faux Pas: How To Set Voltage The Right Way

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Discover The Myriad Applications Of Beads In Flow Cytometry

Discover The Myriad Applications Of Beads In Flow Cytometry

By: Tim Bushnell, PhD

What is the single-most important feature of a flow cytometry experiment? Arguably, it’s the stained cells that gather data about biological processes of interest. However, a flow cytometer can measure cell-like particles as well as cells, which opens the realm of cytometry to the use of microspheres. Most researchers are familiar with the 4-Cs that beads can be used for: Control, Calibration, Compensation, and Counting. Beyond the 4-Cs, many are familiar with the multiplex bead assays for measuring analytes. Today, we will take a look beyond these well-known uses and discover the myriad applications of the “Mighty Microspheres.”

Mass Cytometry Revolves Around These 5 Things

Mass Cytometry Revolves Around These 5 Things

By: Tim Bushnell, PhD

Because mass cytometry allows users to characterize masses so effectively, data can be normalized much more efficiently than what traditional fluorescent flow will permit. If there is no working CyTof at your institution, you can still partner with CyTof-friendly research institutions that have the technology on hand. And because the samples are fixed, you can ship them overnight. This way, they will be analyzed for you. Today’s article will summarize the functionality of mass cytometry technology. This tech has been commercialized largely by Fluidigm in the CyTof systems. There are 5 key points to cover, or takeaways, that cytometrists should…

3 Ways To Improve Flow Cytometry Troubleshooting

3 Ways To Improve Flow Cytometry Troubleshooting

By: Tim Bushnell, PhD

A lot of the troubleshooting is focused on fluidics issues. If you sit down and think about your workflow, and how you might want to add a couple of little tweaks here and there which will ultimately help you improve the quality of your data as well as aid you in identifying issues before they become problems your troubleshooting will be much smoother. Consider these three things, what do you before you start collecting data, ensure you have appropriate plots of time vs fluorescence for each of the lasers your using and apply appropriate gating procedures.

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.