3 Ways Flow Cytometry Can Be Used To Research Bacteria

The global bacterial biomass has been estimated to be 5×1030, which is significantly higher than plants and animals. We are intimately dependent on bacteria for processing waste, producing vitamin B12, fixing nitrogen and so much more.  While some bacteria are known pathogens, most are not.  These organisms live in all environments from the soil to hot springs to deep thermal vents.  

Bacteria, on the whole, are typically 0.5 to 5 µm in size, just at the edge of the detection of our flow cytometers.  However, flow cytometry has become an essential tool for microbiologists to characterize bacteria as well as isolate them.  Table 1, taken from Current Protocols (Robinson, 2004 11.1.1-11.1.4) shows a rough comparison between bacteria, yeast, and larger eukaryotes.  

rough comparison between bacteria, yeast, and larger eukaryotes

The article goes on to make the following estimate of fluorescence signal. Assuming an average eukaryote has a signal of 100,000 MFI, the average bacteria would have a surface signal of 181-727 MFI, and an intracellular signal of 30-300 MFI. So it is important that the probes that are used are as bright as possible. 

This blog highlights the power of flow cytometry focusing on activity assays, bacterial susceptibility testing, and cell sorting. These techniques are just the tip of the iceberg when it comes to studying bacteria using flow cytometry. 

Assays: Viability And Metabolic Activity Of Bacteria.

Traditionally, bacterial viability is measured using plate growth techniques. These are not always ideal, especially for slow-growing or hard to culture bacteria. This is where fluorescence is useful, and one of the tools for this is the Live/Dead BacLight kit from ThermoFisher. 

This kit contains a cell-permeant dye (Syto 9) and a cell impermeant dye (PI).  Labeling cells with these two dyes allow for the detection of live vs dead cells, as shown from this data taken from the ThermoFisher website. 

Figure 1: Use of the Live/Dead BacLight Kit. Dead cells show a lower green fluorescence than the live cells. Data from ThermoFisher.

By adding a bead to this kit, it is possible to enumerate the live cells at the same time. The advantage of this assay is that it works with both gram-positive (S. aureus, left) and gram-negative bacteria (E. coli, right).

If metabolic activity is important, the use of a dye to measure that parameter is also available, as shown in the figure below.

Figure 2: Measuring viability and metabolic activity of bacteria. Data from ThermoFisher.

One of the common assays for bacterial flow is viability. Our example uses the Thermo-Fisher Live/Dead Bac Light Kit, pictured [in Figure 1].

As you can see, this kit uses two dyes: Syto 9, a cell-permeant nuclear dye, and propidium iodide (PI), a cell-impermeant dye. When you plot Syto 9 fluorescence vs. that of PI—using S. aureus per this example—you can discriminate accurately between live cells and dead ones.

In fact, using flow cytometry to characterize bacteria is out of this world! Leys and coworkers (2009) used the bacteria Cupriavidus metallidurans CH34 to assess its survival in space. Samples were sent to the International Space Station, with controls grown on Earth. The cells were tested for growth on plates as well as a variety of metabolic characteristics that are summarized in this table from that publication.

Flow cytometry is an excellent tool for measurements of bacterial metabolic characteristics and can provide a great deal of information in a relatively short period of time.   

Flow Cytometry And Susceptibility Testing.

Tuberculosis, caused by the bacteria Mycobacterium tuberculosis, has been estimated to cause about 3 million deaths per year, with 100 million new cases diagnosed. M. tuberculosis is also a slow-growing bacteria, which impacts the ability to rapidly test new compounds for treating this disease. A typical experiment takes 2 to 3 weeks before results are known.

Norden and coworker (1995) turned to flow cytometry as a possible solution, using the fluorescent dye fluorescein diacetate (FDA), which is colorless until it is hydrolyzed to fluorescein by cellular processes. As shown in the figure below, viable M. tuberculosis (left) were able to hydrolyze the FDA and a clear fluorescent signal was detected. Nonviable M. tuberculosis (right), on the other hand, did not fluoresce.  

Figure 3:  Measuring the metabolic activity of M. tuberculosis using FDA.

This allowed the researchers to measure the effect of increasing concentration of different drugs on the viability of M. tuberculosis. These results were obtained in 24 hours, saving weeks of time using traditional methods and allowing for the more rapid screening of multiple compounds. 

Figure 4:  Effects of increasing doses of drugs on M. tuberculosis viability. 

The ability to rapidly test the effect of different compounds on the growth of bacteria using flow cytometry saves time and money.  

Sorting Bacteria

Isolation of bacteria can be a tedious process, especially if the bacteria are not amenable to culture in the laboratory. Additionally, rather than the suite of antigens used for phenotyping, bacteria are characterized by their 16S ribosomal RNA (rRNA) sequences. There is extensive literature on different probes to characterize different bacterial species.

To address this issue Batni and coworkers (2019) developed a methodology to introduce these probes into living cells without a permeabilization step. Their live FISH procedure is summarized below. 

Having developed this method, the authors set out to test this with samples from Baltic seawater. Here, they used a probe for alphaproteobacteria labeled with 6-carboxyfluorescein. Their sorting strategy is shown below. 

Batani et al. applied this methodology to sorting Baltic Sea water (shown in Figure 5) for alphaproteobacteria. The Control group “ALF968_6-FAM + PI,” shown in sub-figure “E,” was labeled with an alphaproteobacteria probe and propidium iodide. Positive cells were identified and sorted into a 96-well plate, and researchers were then able to identify positive sorts based upon turbidity of the culture—something the other controls were not able to do.

This demonstrated that Batani et al.’s technique is applicable to isolating new bacteria based upon their ribosomal sequence. Suffice it to say, this opens up some really exciting new avenues of possibility.

Concluding Remarks

To summarize, flow cytometry can be applied to bacterial populations, even though they are sized below normal limits of detection. Viability and metabolic activity are two common assays that can be applied to bacteria—and you can count bacteria without having to culture them on a plate.

Flow cytometry can speed up susceptibility testing, as demonstrated by the Mycobacterium tuberculosis studies. And of course, bacteria can be sorted by flow. Most interesting of all is that a new bacteria-sorting technique based on RNI identification has been identified and validated. So, if you’re looking to characterize different populations, this may be a great tool for you to explore.

To learn more about important control measures for your flow cytometry lab, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Tim Bushnell, PhD
Tim Bushnell, PhD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Similar Articles

Tools to Improve Your Panel Design – Determining Antigen Density

Tools to Improve Your Panel Design – Determining Antigen Density

By: Tim Bushnell, PhD

When a researcher chooses to use flow cytometry to answer a scientific question, they first have to build a polychromatic panel that will take advantage of the power of the technology and experimental design. When we set up to use flow cytometry to answer a scientific question, we have to design a polychromatic panel that will allow us to identify the cells of interest – the target of the research.  To identify these cells, we need to build a panel that takes advantage of the relative brightness of the fluorochromes, the expression level of the different proteins on the cell,…

This Is How Full Spectrum Cytometry Works

This Is How Full Spectrum Cytometry Works

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

My Proven 5-Point Fast Track To A Career In Flow

My Proven 5-Point Fast Track To A Career In Flow

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Up Your Stain Game With These 7 Non-Fluorescent Histology Dyes

Up Your Stain Game With These 7 Non-Fluorescent Histology Dyes

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Avoid Flow Cytometry Faux Pas: How To Set Voltage The Right Way

Avoid Flow Cytometry Faux Pas: How To Set Voltage The Right Way

By: Tim Bushnell, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

4 Flow Cytometry Assays For Monitoring Intracellular Processes

4 Flow Cytometry Assays For Monitoring Intracellular Processes

By: Tim Bushnell, PhD

The most common flow assay is undoubtedly immunophenotyping, in which fluorescently tagged antibodies are used to bind to cellular proteins. This allows you to determine the types of cells present. As long as there is a fluorescent reporter available, it is possible to measure biological processes using flow cytometry – especially in a phenotypically defined manner. Probably the most common of these assays is the calcium flux assay. And that is just the tip of the iceberg. In addition to calcium, it is possible to measure magnesium and zinc concentrations, reactive oxygen species, and even membrane potential using flow. Today,…

Discover The Myriad Applications Of Beads In Flow Cytometry

Discover The Myriad Applications Of Beads In Flow Cytometry

By: Tim Bushnell, PhD

What is the single-most important feature of a flow cytometry experiment? Arguably, it’s the stained cells that gather data about biological processes of interest. However, a flow cytometer can measure cell-like particles as well as cells, which opens the realm of cytometry to the use of microspheres. Most researchers are familiar with the 4-Cs that beads can be used for: Control, Calibration, Compensation, and Counting. Beyond the 4-Cs, many are familiar with the multiplex bead assays for measuring analytes. Today, we will take a look beyond these well-known uses and discover the myriad applications of the “Mighty Microspheres.”

Mass Cytometry Revolves Around These 5 Things

Mass Cytometry Revolves Around These 5 Things

By: Tim Bushnell, PhD

Because mass cytometry allows users to characterize masses so effectively, data can be normalized much more efficiently than what traditional fluorescent flow will permit. If there is no working CyTof at your institution, you can still partner with CyTof-friendly research institutions that have the technology on hand. And because the samples are fixed, you can ship them overnight. This way, they will be analyzed for you. Today’s article will summarize the functionality of mass cytometry technology. This tech has been commercialized largely by Fluidigm in the CyTof systems. There are 5 key points to cover, or takeaways, that cytometrists should…

3 Ways To Improve Flow Cytometry Troubleshooting

3 Ways To Improve Flow Cytometry Troubleshooting

By: Tim Bushnell, PhD

A lot of the troubleshooting is focused on fluidics issues. If you sit down and think about your workflow, and how you might want to add a couple of little tweaks here and there which will ultimately help you improve the quality of your data as well as aid you in identifying issues before they become problems your troubleshooting will be much smoother. Consider these three things, what do you before you start collecting data, ensure you have appropriate plots of time vs fluorescence for each of the lasers your using and apply appropriate gating procedures.

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.