Up Your Stain Game With These 7 Non-Fluorescent Histology Dyes

Histological stains that have an affinity for specific cellular components have been in use since at least the 1770s when John Hill used carmine to study tissues. Stain variety exploded during the 1800s with German dye manufacturers, such as BASF, developing aniline, methylene blue, and eosin. Eosin is still in use today with hematoxylin for H&E staining. 

Since the advent of immunofluorescence and fluorescent protein tagging, which provides very specific labeling, dyes have been relegated to only the most basic imaging. If you don’t need specific proteins labeled, dyes can be a cheap and useful alternative offering simple sample preparation with no or basic microscope techniques. Today we will discuss 7 dyes you should know for use in a laboratory setting.

Perls’ Prussian Blue Stain (1867)

Prussian blue staining is used to identify iron in histology sections and is one of the most common early stains that is still used in medicine today. In pathology, the stain is used to identify excess iron in a sample due to conditions such as blood disorders, lead poisoning, alcoholism, and splenectomy. Prussian blue is also used to label asbestosis fibers dark blue/black. 

Perls’ Prussian Blue is technically not a stain, but a chemical reaction. Right before staining,  hydrochloric acid and potassium ferrocyanide are mixed together. In the presence of free iron, potassium ferric ferrocyanide (Prussian Blue) is precipitated. Prussian Blue is highly colored and highly water-insoluble complex. 

 H&E Staining (1876)

H&E staining uses hematoxylin (haemotoxylin) and eosin to bind acidic and basic structures within the cell, respectively. Practically, this means tissue sections will appear to have purple nuclei and pink cytoplasm and membranes. H&E is the most common histology stain to create contrast in otherwise transparent tissues. H&E is still widely used in pathology labs but often overlooked for tissues of normal morphology. There is a good reason it has been in use for over 100 years and is the first histological stain new scientists learn–it works!

Congo Red Stain (1883)

Congo Red is an azo dye that was originally synthesized as a textile dye. Congo Red staining is used for the visualization of amyloid deposits. Interestingly, when Congo Red binds to amyloid structures, the dye will appear green with polarized microscopy due to a special birefringent property. Although Congo Red is often used with transmitted light microscopy (bright field or polarization), it can also be used for a fluorescent stain. Congo Red has an excitation maximum at 497nm and emission at 614nm. 

Other uses for Congo Red stain include the cell wall of plants and fungi, the outer membrane of gram-negative bacteria, and even tapeworm cysts. Glycoprotein rich structures in cells and organisms bind Congo Red and will stain positive. Congo Red has shown to be a possible carcinogen with the Ames Test, so proper protective equipment needs to be used. 

Gram Staining (1884)

Gram staining is often the first staining technique that microbiologists will learn. The purpose of this test is to identify bacteria belonging to one of two groups: gram-negative and gram-positive bacteria. Before molecular methods to identify a type of bacteria, gram staining was the first step in characterizing a microbe. 

Gram staining uses several dyes as well as an alcohol rinse. The process involves heat fixing the bacteria to a slide, submerging the slide in crystal violet, and followed with submerging in Lugol’s iodine. The iodine causes crystals to form, which remain trapped in the bacteria with the thick cell walls (hence gram-positive). In gram-negative bacteria, the crystal violet washes out with an alcohol rinse. In order to stain gram-negative bacteria, a counterstain such as fuchsin is used. It is important to note that dead or permeabilized gram-positive bacteria will allow crystal violet to wash out and will, therefore, appear to be gram-negative.

Trichrome Stain (1888)

Just as the name implies, this method uses three (tri) colors (chrome). There are several variations on this technique for specific techniques but in modern histology trichrome stain generally refers to Masson’s trichrome stain. Masson’s trichrome stain was developed to differentiate cells from the surrounding connective tissue, which is less pronounced in samples stained with H&E. Trichrome stain uses Fast Green FCF to stain the connective tissue. This method is particularly useful in muscular dystrophy research and other muscular diseases.

Giemsa Stain (1891)

Most commonly Giemsa stain is used for observation of blood smears for clinical analysis of blood disorders or infection. Giemsa staining is also useful for pathogen studies, which has been used to study malaria, Chlamydia, and cytomegalovirus to name a few. The Giemsa stain contains three chemicals: methylene blue, eosin, and Azure B. When combined with May Grunwald, different cells stain anywhere from dark blue to pale pink and even grey.

Giemsa stain binds AT-rich regions of DNA, but it doesn’t require a fluorescent microscope like DAPI. Chromosomal banding or “G banding” takes advantage of the stain’s preferential staining of AT regions creating a recognizable pattern on chromosomes. Chromosomal translocations found via Giemsa staining can be followed up with more precise techniques such as DNA sequencing or FISH.

Oil O (1926)

Oil O staining is comparatively the new kid on the block for histology stains. Oil O stain is in the family of “Sudan Stains” and binds triglycerides and lipids. This is used instead of the fluorescent compound Nile Red. Adipose tissue and fecal smears will use Oil O stain to get an estimate of lipid content, but the stain is not quantitative. Most protocols are developed for fresh or frozen tissues because lipid droplets are preserved best. If fixation is required, PFA is the best option for preserving lipid droplets because organic solvents strip cells of lipids.  

Less obvious uses for Oil O staining are lipid metabolism disorders (diabetes, atherosclerosis), viral infections, hormone biogenesis. 

Concluding Remarks

Good sample preparation and microscopy doesn’t have to be expensive. These dyes and many more will label structures and cost significantly less than immunofluorescence. Try them out for yourself!

To learn more about important control measures for your flow cytometry lab, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class
Heather Brown-Harding
Heather Brown-Harding

Heather Brown-Harding, PhD, is currently the assistant director of Wake Forest Microscopy and graduate teaching faculty.She also maintains a small research group that works on imaging of host-pathogen interactions. Heather is passionate about making science accessible to everyone.High-quality research shouldn’t be exclusive to elite institutions or made incomprehensible by unnecessary jargon. She created the modules for Excite Microscopy with this mission.

In her free time, she enjoys playing with her cat & dog, trying out new craft ciders and painting.You can find her on twitter (@microscopyEd) a few times of day discussing new imaging techniques with peers.

Similar Articles

How To Buy A Flow Cytometer - What You Need To Evaluate From A To Z

How To Buy A Flow Cytometer - What You Need To Evaluate From A To Z

By: Tim Bushnell, PhD

So you have the money to buy a flow cytometer. Is it a sorter? Or perhaps a spectral analyzer? No wait, maybe an imaging mass cytometer?  Big or small?  What to choose?  How to choose?  More importantly, once you sign the contract to purchase the instrument, you don’t want to be struck with buyers remorse.  It is indeed a big decision and we have the best advice for you to consider before making the purchase. Let’s discuss some of the steps you should take to prevent buyers remorse and ensure you are getting the best instrument for your needs.  Do…

How small can you go? Flow cytometry of bacteria and viruses

How small can you go? Flow cytometry of bacteria and viruses

By: Tim Bushnell, PhD

Flow cytometers are traditionally designed for measuring particles, like beads and cells. These tend to fall in the small micron size range. Looking at the relative size of different targets of biological interest, it is clear the most common targets for flow cytometry (cells) are comparatively large (figure 1). Figure 1:  Relative size of different biological targets of interest. Image modified from Bioninja.    In the visible spectrum, where most of the excitation light sources reside, it is clear the cells are larger than the light. This is important as one of the characteristics that we typically measure is the amount…

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

What Is Spectral Unmixing And Why It's Important In Flow Cytometry

By: Tim Bushnell, PhD

As the labeled cell passes through the interrogation point, it is illuminated by the excitation lasers. The fluorochromes, fluoresce; emitting photons of a higher wavelength than the excitation source. This is typically modeled using spectral viewers such as in the figure below, which shows the excitation (dashed lines) and emission (filled curves) for Brilliant Violet 421TM (purple) and Alexa Fluor 488Ⓡ (green).  Figure 1: Excitation and emission profiles of BV421TM and AF488Ⓡ  In traditional fluorescent flow cytometry (TFF), the instrument measures each fluorochrome off an individual detector. Since the detectors we use — photomultiplier tubes (PMT) and avalanche photodiodes (APD)…

How To Extract Cells From Tissues Using Laser Capture Microscopy

How To Extract Cells From Tissues Using Laser Capture Microscopy

By: Tim Bushnell, PhD

Extracting specific cells still remains an important aspect of several emerging genomic techniques. Prior knowledge about the input cells helps to put the downstream results in context. The most common isolation technique is cell sorting, but it requires a single cell suspension and eliminates any spatial information about the microenvironment. Spatial transcriptomics is an emerging technique that can address some of these issues, but that is a topic for another blog.  So what does a researcher who needs to isolate a specific type of cell do? The answer lies in the technique of laser capture microdissection (LCM). Developed at the National…

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

The Importance Of Quality Control And Quality Assurance In Flow Cytometry (Part 4 Of 6)

By: Tim Bushnell, PhD

Incorporating quality control as a part of the optimization process in  your flow cytometry protocol is important. Take a step back and consider how to build quality control tracking into the experimental protocol.  When researchers hear about quality control, they immediately shift their attention to those operating and maintaining the instrument, as if the whole weight of QC should fall on their shoulders.   It is true that core facilities work hard to provide high-quality instruments and monitor performance over time so that the researchers can enjoy uniformity in their experiments. That, however, is just one level of QC.  As the experimental…

How To Optimize Instrument Voltage For Flow Cytometry Experiments  (Part 3 Of 6)

How To Optimize Instrument Voltage For Flow Cytometry Experiments (Part 3 Of 6)

By: Tim Bushnell, PhD

As we continue to explore the steps involved in optimizing a flow cytometry experiment, we turn our attention to the detectors and optimizing sensitivity: instrument voltage optimization.  This is important as we want to ensure that we can make as sensitive a measurement as possible.  This requires us to know the optimal sensitivity of our instrument, and how our stained cells are resolved based on that voltage.  Let’s start by asking the question what makes a good voltage?  Joe Trotter, from the BD Biosciences Advanced Technology Group, once suggested the following:  Electronic noise effects resolution sensitivity   A good minimal PMT…

Optimizing Flow Cytometry Experiments - Part 2         How To Block Samples (Sample Blocking)

Optimizing Flow Cytometry Experiments - Part 2 How To Block Samples (Sample Blocking)

By: Tim Bushnell, PhD

In my previous blog on  experimental optimization, we discussed the idea of identifying the best antibody concentration for staining the cells. We did this through a process called titration, which  focuses on finding the best signal-to-noise ratio at the lowest antibody concentration. In this blog we will deal with sample blocking As a reminder, there are two other major binding concerns with antibodies. The first is the specific binding of the Fc fragment of the antibody to the Fc Receptor expressed on some cells. This protein is critical for the process of destroying microbes or other cells that have been…

How To Determine The Optimal Antibody Concentration For Your Flow Cytometry Experiment (Part 1 of 6)

How To Determine The Optimal Antibody Concentration For Your Flow Cytometry Experiment (Part 1 of 6)

By: Tim Bushnell, PhD

Over the next series of blog posts, we will explore the different aspects of optimizing a polychromatic flow cytometry panel. These steps range from figuring out the best voltage to use, which controls are critical for data interpretation, what quality control tools can be integrated into the assay; how to block cells, and more. This blog will focus on determining the optimal antibody concentration.  As a reminder about the antibody structure, a schematic of an antibody is shown below.  Figure 1: Schematic of an antibody. Figure from Wikipedia. The antibody is composed of two heavy chains and two light chains that…

2020 - A Year Turned Upside Down

2020 - A Year Turned Upside Down

By: Tim Bushnell, PhD

What an incredible year 2020 has been. It started off like any other year and bam SARS-CoV-2 (aka COVID 19) entered the equation, bringing chaos and havoc to the world. Things kept changing overnight as new rules and regulations popped up. Masking, quarantine, and flatten the curve became common words in the news. How we met, how we interacted changed almost overnight. Throughout all of this, as we look to 2021, there is hope and optimism. Multiple vaccines have been developed, building on years of research into the SARS-CoV virus, with some approved for human use, and others on the horizon.…

Top Technical Training eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.