Skip to content

The most common flow assay is undoubtedly immunophenotyping, in which fluorescently tagged antibodies are used to bind to cellular proteins. This allows you to determine the types of cells present. As long as there is a fluorescent reporter available, it is possible to measure biological processes using flow cytometry – especially in a phenotypically defined manner. Probably the most common of these assays is the calcium flux assay. And that is just the tip of the iceberg. In addition to calcium, it is possible to measure magnesium and zinc concentrations, reactive oxygen species, and even membrane potential using flow. Today, we’ll cover 4 assays that use a fluorescent reporter to measure their target, allowing researchers to challenge the cells and measure their response in real time.

Read More

What is the single-most important feature of a flow cytometry experiment? Arguably, it’s the stained cells that gather data about biological processes of interest. However, a flow cytometer can measure cell-like particles as well as cells, which opens the realm of cytometry to the use of microspheres. Most researchers are familiar with the 4-Cs that beads can be used for: Control, Calibration, Compensation, and Counting. Beyond the 4-Cs, many are familiar with the multiplex bead assays for measuring analytes. Today, we will take a look beyond these well-known uses and discover the myriad applications of the “Mighty Microspheres.”

Read More