Skip to content

Reproducibility is key to the scientific method. After the results of a study are published, the community validates the findings and extends them. If the findings are not reproducible, the second step is impossible. With performable experiments increasing in complexity, and the concurrent increase in the cost of equipment and reagents to perform these experiments, it is important to find the best way to maximize the money spent on advancing research. In flow cytometry, there are many places where improvements can be made to increase the consistency and reproducibility of an experiment. The most obvious place is in the instrument, but today’s focus is on the reagents we use to identify cells of interest: Antibodies and fluorochromes.

Read More

All flow cytometer instruments have a certain 3 components, and the way they are put together will dictate the performance of the system. As a user, you’ll be interacting heavily with these components, so you need to know both what they are and how they work. There are fluidics, optics, and electronics. The fluidics allow you to interact at the right flow rate so that your data keep a tight CV. Then you can run the same flow rate for all your samples, and you won’t have different CVs for different samples. There are also different optics you can use, like PMTs, APDs, and PDs. It’s important to remember the bandpass filters because they indicate the detector on which your signal will be measured. And with a newer generation of instruments, you can actually change out bandpass filters and design the flow cytometer to your specifications – just make sure you cite the specific bandpass filter that you use. Finally, there are electronics, which process the photon into an electronic signal that is ultimately digitized and stored in a file known as the “FCS file.” An analysis can be performed on this file at a later time.

Read More