Skip to content

Written by Tim Bushnell, PhD After completing the perfect staining and cytometry run, the hard work begins – data analysis.  To properly identify the cells of interest, it is critical to pull together knowledge of the biology with the controls run in the experiment to properly place the regions of interest that will be dictate…

Read More

Written by Tim Bushnell, PhD Depending on the experimental design, many researchers will be doing complex assays that will require statistical analysis to determine if the hypothesis being tested is statistically significant or not. Unfortunately, many researchers go about this analysis the wrong way, resulting in spurious conclusions. The following points are guides to help…

Read More

Written by Tim Bushnell, PhD A laser type in a flow cytometer with a wavelength of about 560nm. The green and yellow laser are more effective at exciting PE and its tandems than the traditional blue laser. The yellow laser is also often used to excite the “fruit” dyes like mCherry. For more information, please…

Read More

Written by Tim Bushnell, PhD After completing the perfect staining and cytometry run, the hard work begins – data analysis. To properly identify the cells of interest, it is critical to pull together knowledge of the biology with the controls run in the experiment to properly place the regions of interest that will be dictate…

Read More

Written by Tim Bushnell, PhD The laser type in flow cytometers with a wavelength of around 530nm. Standard “green” lasers are about 532nm, but vary between 530nm and 535nm usually. The green and yellow laser are more effective at exciting PE and its tandems than the traditional blue laser.

Read More

A laser with a wavelength in the UV range. Typically in flow cytometers, the UV laser has a wavelength of 350nm or 355nm. Some have a wavelength of 375nm.

Read More